zookeeper的Leader选举过程分析

zookeeper中Leader的选举是保证分布式数据一致性的关键所在,当zookeeper集群中的一台服务器出现以下两种情况之一时,就需要进入Leader选举。

  (1) 服务器初始化启动。

  (2) 服务器运行期间无法和Leader保持连接,即leader挂掉了。

先来看第一种情况,就是集群配好了,初始启动的情况,关于zookeeper集群的安装与配置参考“zookeeper的安装与集群配置”。

一、 服务器启动时期的Leader选举

  若进行Leader选举,则至少需要两台机器,这里选取3台机器组成的服务器集群为例。在集群初始化阶段,当有一台服务器Server1启动时,其单独无法进行和完成Leader选举,当第二台服务器Server2启动时,此时两台机器可以相互通信,每台机器都试图找到Leader,于是进入Leader选举过程。选举过程如下:

  (1) 每个Server发出一个投票。由于是初始情况,Server1和Server2都会将自己作为Leader服务器来进行投票,每次投票会包含所推举的服务器的myid(每个zookeeper节点都会有一个myid文件,这在安装zookeeper的时候已经确定)和ZXID(zookeeper的事务id),使用(myid, ZXID)来表示,此时Server1的投票为(1, 0),Server2的投票为(2, 0),然后各自将这个投票发给集群中其他机器。

  (2) 接受来自各个服务器的投票。集群的每个服务器收到投票后,首先判断该投票的有效性,如检查是否是本轮投票、是否来自LOOKING状态(LOOKING,竞选状态。FOLLOWING,随从状态,同步leader状态,参与投票。OBSERVING,观察状态,同步leader状态,不参与投票。LEADING,领导者状态。)的服务器。

  (3) 处理投票。针对每一个投票,服务器都需要将别人的投票和自己的投票进行PK,PK规则如下:

优先检查ZXID。ZXID比较大的服务器优先作为Leader。
如果ZXID相同,那么就比较myid。myid较大的服务器作为Leader服务器。

  对于Server1而言,它的投票是(1, 0),接收Server2的投票为(2, 0),首先会比较两者的ZXID,均为0,再比较myid,此时Server2的myid最大,于是更新自己的投票为(2, 0),然后重新投票,对于Server2而言,其无须更新自己的投票,只是再次向集群中所有机器发出上一次投票信息即可。

  (4) 统计投票。每次投票后,服务器都会统计投票信息,判断是否已经有过半机器接受到相同的投票信息,对于Server1、Server2而言,都统计出集群中已经有两台机器接受了(2, 0)的投票信息,此时便认为已经选出了Leader。

  (5) 改变服务器状态。一旦确定了Leader,每个服务器就会更新自己的状态,如果是Follower,那么就变更为FOLLOWING,如果是Leader,就变更为LEADING。

二、服务器运行时期的Leader选举

        在Zookeeper运行期间,Leader与非Leader服务器各司其职,即便当有非Leader服务器宕机或新加入,此时也不会影响Leader,但是一旦Leader服务器挂了,那么整个集群将暂停对外服务,进入新一轮Leader选举,其过程和启动时期的Leader选举过程基本一致。假设正在运行的有Server1、Server2、Server3三台服务器,当前Leader是Server2,若某一时刻Leader挂了,此时便开始Leader选举。选举过程如下:

  (1) 变更状态。Leader挂后,余下的非Observer服务器都会讲自己的服务器状态变更为LOOKING,然后开始进入Leader选举过程。

  (2) 每个Server会发出一个投票。在运行期间,每个服务器上的ZXID可能不同,此时假定Server1的ZXID为123,Server3的ZXID为122;在第一轮投票中,Server1和Server3都会投自己,产生投票(1, 123),(3, 122),然后各自将投票发送给集群中所有机器。

  (3) 接收来自各个服务器的投票。与启动时过程相同。

  (4) 处理投票。与启动时过程相同,按照pk规则,此时Server1将会成为Leader。

  (5) 统计投票。与启动时过程相同。

  (6) 改变服务器的状态。与启动时过程相同。

Leader选举算法分析

  在3.4.0后的Zookeeper的版本只保留了TCP版本的FastLeaderElection选举算法。当一台机器进入Leader选举时,当前集群可能会处于以下两种状态

    · 集群中已经存在Leader。

    · 集群中不存在Leader。

  对于集群中已经存在Leader而言,此种情况一般都是某台机器启动得较晚,在其启动之前,集群已经在正常工作,对这种情况,该机器试图去选举Leader时,会被告知当前服务器的Leader信息,对于该机器而言,仅仅需要和Leader机器建立起连接,并进行状态同步即可。而在集群中不存在Leader情况下则会相对复杂,其步骤如下:

  (1) 第一次投票。无论哪种导致进行Leader选举,集群的所有机器都处于试图选举出一个Leader的状态,即LOOKING状态,LOOKING机器会向所有其他机器发送消息,该消息称为投票。投票中包含了SID(服务器的唯一标识)和ZXID(事务ID),(SID, ZXID)形式来标识一次投票信息。假定Zookeeper由5台机器组成,SID分别为1、2、3、4、5,ZXID分别为9、9、9、8、8,并且此时SID为2的机器是Leader机器,某一时刻,1、2所在机器出现故障,因此集群开始进行Leader选举。在第一次投票时,每台机器都会将自己作为投票对象,于是SID为3、4、5的机器投票情况分别为(3, 9),(4, 8), (5, 8)。

  (2) 变更投票。每台机器发出投票后,也会收到其他机器的投票,每台机器会根据一定规则来处理收到的其他机器的投票,并以此来决定是否需要变更自己的投票,这个规则也是整个Leader选举算法的核心所在,其中术语描述如下:

    · vote_sid:接收到的投票中所推举Leader服务器的SID。

    · vote_zxid:接收到的投票中所推举Leader服务器的ZXID。

    · self_sid:当前服务器自己的SID。

    · self_zxid:当前服务器自己的ZXID。

  每次对收到的投票的处理,都是对(vote_sid, vote_zxid)和(self_sid, self_zxid)对比的过程。

    规则一:如果vote_zxid大于self_zxid,就认可当前收到的投票,并再次将该投票发送出去。

    规则二:如果vote_zxid小于self_zxid,那么坚持自己的投票,不做任何变更。

    规则三:如果vote_zxid等于self_zxid,那么就对比两者的SID,如果vote_sid大于self_sid,那么就认可当前收到的投票,并再次将该投票发送出去。

    规则四:如果vote_zxid等于self_zxid,并且vote_sid小于self_sid,那么坚持自己的投票,不做任何变更。

  结合上面规则,本例可以用给下图来表示集群变更过程:

zookeeper的Leader选举过程分析_第1张图片

  (3) 确定Leader。经过第二轮投票后,集群中的每台机器都会再次接收到其他机器的投票,然后开始统计投票,如果一台机器超过半数的相同投票,那么这个投票对应的SID机器即为Leader。此时Server3将成为Leader。

  由上面规则可知,通常那台服务器上的数据越新(即ZXID会越大),其成为Leader的可能性越大,也就越能够保证数据的恢复。如果ZXID相同,则SID越大机会越大。

 

你可能感兴趣的:(大数据)