本文使用JNI技术在Android平台部署深度学习模型,并使用MNN框架进行模型推理。
mnist-mnn
打开Android studio, 创建一个Native C++工程,并配置OpenCV。
在Android中使用OpenCV
在PC上编译MNN-Android的动态链接库
MNN安装和编译
CMakeLists.txt编写
在jni中编译C/C++程序有两种方法:一是使用ndk-build(需要配置.mk文件),二是使用CMake,本文使用CMake编译的方法。
cmake_minimum_required(VERSION 3.4.1)
# Creates and names a library, sets it as either STATIC
# or SHARED, and provides the relative paths to its source code.
# You can define multiple libraries, and CMake builds them for you.
# Gradle automatically packages shared libraries with your APK.
# opencv
set( OpenCV_DIR /home/yinliang/software/OpenCV-android-sdk/sdk/native/jni )
find_package(OpenCV REQUIRED)
# MNN_DIR为自己安装的MNN的路径
set(MNN_DIR /home/yinliang/software/MNN)
# mnn的头文件
include_directories(${MNN_DIR}/include)
include_directories(${MNN_DIR}/include/MNN)
include_directories(${MNN_DIR}/tools)
include_directories(${MNN_DIR}/tools/cpp)
include_directories(${MNN_DIR}/source)
include_directories(${MNN_DIR}/source/backend)
include_directories(${MNN_DIR}/source/core)
# 这个是自己定义的.h文件
include_directories(get_result.h)
# 链接mnn的动态库,这里编译的是64位的,对应Android里面的arm64-v8a架构
aux_source_directory(. SRCS)
add_library( # Sets the name of the library.
native-lib
# Sets the library as a shared library.
SHARED
# Provides a relative path to your source file(s).
${SRCS})
find_library( # Sets the name of the path variable.
log-lib
log)
# 需要把libMNN.so放到工程文件里来,具体位置在 app/libs下,放在工程外好像不行
set(dis_DIR ../../../../libs)
add_library(
MNN
SHARED
IMPORTED
)
set_target_properties(
MNN
PROPERTIES IMPORTED_LOCATION
${dis_DIR}/arm64-v8a/libMNN.so
)
# 代码主要依赖opencv和mnn两个库,这里链接一下
target_link_libraries( # Specifies the target library.
native-lib
# Links the target library to the log library
# included in the NDK.
${log-lib}
MNN
jnigraphics
${OpenCV_LIBS})
sourceSets {
main{
jniLibs.srcDirs=['libs']
}
}
完整的build.gradle为:
apply plugin: 'com.android.application'
android {
compileSdkVersion 30
defaultConfig {
applicationId "com.mnn.mnist"
minSdkVersion 25
targetSdkVersion 26
versionCode 1
versionName "1.0"
testInstrumentationRunner "androidx.test.runner.AndroidJUnitRunner"
sourceSets {
main{
jniLibs.srcDirs=['libs']
}
}
externalNativeBuild {
cmake {
cppFlags "-std=c++14"
arguments "-DANDROID_STL=c++_shared"
abiFilters "arm64-v8a"
}
}
}
buildTypes {
release {
minifyEnabled false
proguardFiles getDefaultProguardFile('proguard-android-optimize.txt'), 'proguard-rules.pro'
}
}
externalNativeBuild {
cmake {
path "src/main/cpp/CMakeLists.txt"
version "3.10.2"
}
}
}
dependencies {
implementation fileTree(dir: 'libs', include: ['*.jar'])
implementation 'androidx.appcompat:appcompat:1.0.2'
implementation 'androidx.constraintlayout:constraintlayout:1.1.3'
testImplementation 'junit:junit:4.12'
androidTestImplementation 'androidx.test:runner:1.1.1'
androidTestImplementation 'androidx.test.espresso:espresso-core:3.1.1'
}
//
// Created by yinliang on 20-8-17.
//
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include "Backend.hpp"
#include "Interpreter.hpp"
#include "MNNDefine.h"
#include "Interpreter.hpp"
#include "Tensor.hpp"
using namespace MNN;
using namespace std;
using namespace cv;
int mnist(Mat image_src, const char* model_name){
// const char* model_name = "/home/yinliang/works/C/MNN-APPLICATIONS/applications/mnist/onnx/jni/graphs/mnist.mnn";
int forward = MNN_FORWARD_CPU;
// int forward = MNN_FORWARD_OPENCL;
int precision = 2;
int power = 0;
int memory = 0;
int threads = 1;
int INPUT_SIZE = 28;
cv::Mat raw_image = image_src;
cv::Mat image;
cv::resize(raw_image, image, cv::Size(INPUT_SIZE, INPUT_SIZE));
// cout<<"model_path:" << model_name<
// 1. 创建Interpreter, 通过磁盘文件创建: static Interpreter* createFromFile(const char* file);
std::shared_ptr<Interpreter> net(Interpreter::createFromFile(model_name));
MNN::ScheduleConfig config;
// 2. 调度配置,
// numThread决定并发数的多少,但具体线程数和并发效率,不完全取决于numThread
// 推理时,主选后端由type指定,默认为CPU。在主选后端不支持模型中的算子时,启用由backupType指定的备选后端。
config.numThread = threads;
config.type = static_cast<MNNForwardType>(forward);
MNN::BackendConfig backendConfig;
// 3. 后端配置
// memory、power、precision分别为内存、功耗和精度偏好
backendConfig.precision = (MNN::BackendConfig::PrecisionMode)precision;
backendConfig.power = (MNN::BackendConfig::PowerMode) power;
backendConfig.memory = (MNN::BackendConfig::MemoryMode) memory;
config.backendConfig = &backendConfig;
// 4. 创建session
auto session = net->createSession(config);
net->releaseModel();
clock_t start = clock();
// preprocessing
image.convertTo(image, CV_32FC3);
image = image / 255.0f;
// 5. 输入数据
// wrapping input tensor, convert nhwc to nchw
std::vector<int> dims{1, INPUT_SIZE, INPUT_SIZE, 3};
auto nhwc_Tensor = MNN::Tensor::create<float>(dims, NULL, MNN::Tensor::TENSORFLOW);
auto nhwc_data = nhwc_Tensor->host<float>();
auto nhwc_size = nhwc_Tensor->size();
::memcpy(nhwc_data, image.data, nhwc_size);
std::string input_tensor = "data";
// 获取输入tensor
// 拷贝数据, 通过这类拷贝数据的方式,用户只需要关注自己创建的tensor的数据布局,
// copyFromHostTensor会负责处理数据布局上的转换(如需)和后端间的数据拷贝(如需)。
auto inputTensor = net->getSessionInput(session, nullptr);
inputTensor->copyFromHostTensor(nhwc_Tensor);
// 6. 运行会话
net->runSession(session);
// 7. 获取输出
std::string output_tensor_name0 = "dense1_fwd";
// 获取输出tensor
MNN::Tensor *tensor_scores = net->getSessionOutput(session, output_tensor_name0.c_str());
MNN::Tensor tensor_scores_host(tensor_scores, tensor_scores->getDimensionType());
// 拷贝数据
tensor_scores->copyToHostTensor(&tensor_scores_host);
// post processing steps
auto scores_dataPtr = tensor_scores_host.host<float>();
// softmax
float exp_sum = 0.0f;
for (int i = 0; i < 10; ++i)
{
float val = scores_dataPtr[i];
exp_sum += val;
}
// get result idx
int idx = 0;
float max_prob = -10.0f;
for (int i = 0; i < 10; ++i)
{
float val = scores_dataPtr[i];
float prob = val / exp_sum;
if (prob > max_prob)
{
max_prob = prob;
idx = i;
}
}
// printf("the result is %d\n", idx);
return idx;
}
函数的输入为一个Mat类型的图像,const char*类型的模型地址,输出为识别结果。
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include "Backend.hpp"
#include "Interpreter.hpp"
#include "MNNDefine.h"
#include "Interpreter.hpp"
#include "Tensor.hpp"
using namespace MNN;
using namespace std;
using namespace cv;
int mnist(Mat image_src, const char* model_name);
#include
#include
#include
#include
#include "get_result.h"
#include "stdio.h"
#include "stdlib.h"
extern "C" JNIEXPORT jstring JNICALL
Java_com_mnn_mnist_MainActivity_mnistJNI (JNIEnv *env, jobject obj, jobject bitmap, jstring jstr){
AndroidBitmapInfo info;
void *pixels;
CV_Assert(AndroidBitmap_getInfo(env, bitmap, &info) >= 0);
CV_Assert(info.format == ANDROID_BITMAP_FORMAT_RGBA_8888 ||
info.format == ANDROID_BITMAP_FORMAT_RGB_565);
CV_Assert(AndroidBitmap_lockPixels(env, bitmap, &pixels) >= 0);
CV_Assert(pixels);
if (info.format == ANDROID_BITMAP_FORMAT_RGBA_8888) {
Mat temp(info.height, info.width, CV_8UC4, pixels);
Mat temp2 = temp.clone();
//将jstring类型转换成C++里的const char*类型
const char *path = env->GetStringUTFChars(jstr, 0);
Mat RGB;
//先将图像格式由BGRA转换成RGB,不然识别结果不对
cvtColor(temp2, RGB, COLOR_RGBA2RGB);
//调用之前定义好的mnist()方法,识别文字图像
int result = mnist(RGB, path);
//将图像转回RGBA格式,Android端才可以显示
Mat show(info.height, info.width, CV_8UC4, pixels);
cvtColor(RGB, temp, COLOR_RGB2RGBA);
//将int类型的识别结果转成jstring类型,并返回
string re_reco = to_string(result);
const char* ss = re_reco.c_str();
char cap[12];
strcpy(cap, ss);
return (env)->NewStringUTF(cap);;
} else {
Mat temp(info.height, info.width, CV_8UC2, pixels);
}
AndroidBitmap_unlockPixels(env, bitmap);
}
由于不会Android开发,这部分代码很粗糙,能正确运行,但是不够优雅。
package com.mnn.mnist;
import androidx.annotation.NonNull;
import androidx.appcompat.app.AppCompatActivity;
import androidx.core.app.ActivityCompat;
import androidx.core.content.ContextCompat;
import android.Manifest;
import android.content.res.AssetManager;
import android.graphics.Bitmap;
import android.graphics.BitmapFactory;
import android.os.Bundle;
import android.os.Environment;
import android.view.View;
import android.widget.ImageView;
import android.widget.TextView;
import android.widget.Toast;
import java.io.File;
import static android.content.pm.PackageManager.PERMISSION_GRANTED;
public class MainActivity extends AppCompatActivity implements View.OnClickListener {
//定义两个控件,分别用来显示图像和文本
private ImageView imageView;
private TextView textView;
// 加载生成的动态链接库
// Used to load the 'native-lib' library on application startup.
static {
System.loadLibrary("native-lib");
}
// 声明JNI函数,对应native-lib.cpp里定义的函数
native String mnistJNI(Object bitmap, String str);
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
imageView = findViewById(R.id.imageView);
findViewById(R.id.show).setOnClickListener((View.OnClickListener) this);
findViewById(R.id.process).setOnClickListener((View.OnClickListener) this);
findViewById(R.id.gray).setOnClickListener((View.OnClickListener) this);
textView = findViewById(R.id.textView);
findViewById(R.id.textView).setOnClickListener((View.OnClickListener) this);
myRequetPermission();
}
// 由于我把.mnn模型用adb push放到手机的sd目录下了,需要加权限才能访问到
private void myRequetPermission() {
if (ContextCompat.checkSelfPermission(this, Manifest.permission.READ_EXTERNAL_STORAGE) != PERMISSION_GRANTED) {
ActivityCompat.requestPermissions(this, new String[]{Manifest.permission.READ_EXTERNAL_STORAGE}, 1);
} else {
Toast.makeText(this, "您已经申请了权限!", Toast.LENGTH_SHORT).show();
}
}
@Override
public void onRequestPermissionsResult(int requestCode, @NonNull String[] permissions, @NonNull int[] grantResults) {
super.onRequestPermissionsResult(requestCode, permissions, grantResults);
if (requestCode == 1) {
for (int i = 0; i < permissions.length; i++) {
if (grantResults[i] == PERMISSION_GRANTED) {//选择了“始终允许”
Toast.makeText(this, "" + "权限" + permissions[i] + "申请成功", Toast.LENGTH_SHORT).show();
}
}
}
}
@Override
public void onClick(View v) {
// show为一个button,只用来显示一下图像
if (v.getId() == R.id.show) {
//放一张图像到res/drawable目录下,并命名为test.jpg
//读取图像,在Android里对应的类型为Bitmap
Bitmap bitmap = BitmapFactory.decodeResource(getResources(), R.drawable.test);
//显示图像
imageView.setImageBitmap(bitmap);
} else {
//
Bitmap bitmap = BitmapFactory.decodeResource(getResources(), R.drawable.test);
//读取sd卡下的mnist.mnn模型
String model_path = Environment.getExternalStorageDirectory().getPath() + "/mnist.mnn";
System.out.println("模型路径:" + model_path);
//显示图像
imageView.setImageBitmap(bitmap);
//显示识别结果
textView.setText(mnistJNI(bitmap, model_path));
}
}
@Override
public void onPointerCaptureChanged(boolean hasCapture) {
}
}
对应的界面布局文件
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="match_parent">
<ImageView
android:id="@+id/imageView"
android:layout_width="match_parent"
android:layout_height="match_parent" />
<LinearLayout
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_alignParentBottom="true"
android:orientation="horizontal">
<Button
android:id="@+id/show"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_weight="1"
android:text="show" />
<Button
android:id="@+id/process"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_weight="1"
android:text="mnist" />
<Button
android:id="@+id/gray"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_weight="1"
android:text="gray" />
LinearLayout>
<TextView
android:id="@+id/textView"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:gravity="center"
android:textSize="24sp"
android:textColor="#00ff00"
android:text="result"
/>
RelativeLayout>