- 1.动手学习深度学习课程安排及深度学习数学基础
Unknown To Known
动手学习深度学习深度学习人工智能
视频资源B站:动手学习深度学习——李沐目录目标内容将学到什么1.N维数组样例2.访问2维数组元素3.数据操作4.线性代数5.矩阵计算6.自动求导目标介绍深度学习景点和最新模型LeNetAlexNetVGGResNetLSTMBERT…机器学习基础损失函数,目标函数,过拟合,优化实践使用pytorch实现介绍的知识点在真实数据上体验算法效果内容深度学习基础——线性神经网络,多层感知机卷积神经网络——
- 机器学习数学基础:29.t检验
@心都
机器学习人工智能
一、t检验的定义与核心思想(一)定义t检验(Student’st-test)是一种在统计学领域中广泛应用的基于t分布的统计推断方法。其主要用途在于判断样本均值与总体均值之间,或者两个独立样本的均值之间、配对样本的均值之间是否存在显著差异。例如,在教育研究中,可以通过t检验判断某个班级学生的平均成绩与全校学生的平均成绩是否有显著差异;在医学实验里,可用于比较实验组和对照组的患者某项生理指标的均值是否
- 第N4周:NLP中的文本嵌入
OreoCC
自然语言处理人工智能
本人往期文章可查阅:深度学习总结词嵌入是一种用于自然语言处理(NLP)的技术,用于将单词表示为数字,以便计算机可以处理它们。通俗的讲就是,一种把文本转为数值输入到计算机中的方法。之前文章中提到的将文本转换为字典序列、one-hot编码就是最早期的词嵌入方法。Embedding和EmbeddingBag则是PyTorch中的用来处理文本数据中词嵌入(wordembedding)的工具,它们将离散的词
- 计算系统概述核心知识图谱(考研专项版)
王嘉俊925
计算机组成原理考研考研计算机组成原理计组
计算机系统核心知识图谱(考研专项版)计算机分类:细化对比与考点映射电子模拟vs数字计算机对比表(常考选择题)特性电子模拟计算机电子数字计算机信号类型连续物理量(电压/温度)离散数字信号(二进制)精度低(误差1%-0.1%)极高(理论无限精度)运算方式并行模拟电路串行/并行数字电路存储能力无独立存储器分层存储体系典型应用仪表控制系统(如PID调节)通用计算、数据处理专用计算机新增考点DSP芯片特性:
- PyTorch 学习路线
gorgor在码农
#python入门基础pythonpytorch
学习PyTorch需要结合理论理解和实践编码,逐步掌握其核心功能和实际应用。以下是分阶段的学习路径和资源推荐,适合从入门到进阶:1.基础知识准备前提条件Python基础:熟悉Python语法(变量、函数、类、模块等)。数学基础:了解线性代数、微积分、概率论(深度学习的基础)。机器学习基础:理解神经网络、损失函数、优化器(如梯度下降)等概念。学习资源Python入门:Python官方教程机器学习基础
- 王阳明代数讲义
花间流风
明明德数域王船山熵群与王阳明代数算法情感分析矩阵
王阳明代数讲义王阳明代数讲义古代代数学的发展中世纪与文艺复兴时期的代数学近代代数学的发展现代代数学的发展第一章意气实体过程讲义第二章情感分析与和悦空间的定义第三章王阳明代数的基本概念与定理第四章王阳明代数在问题解决中的应用第五章王阳明代数与情感分析、社会关系力学的结合第六章王阳明代数的数学基础与哲学思考第七章王阳明代数的未来研究方向与展望王阳明代数讲义前言王阳明哲学思想简述王阳明,名守仁,字伯安,
- 专业 英语
程序员爱德华
英语专业英语
文章目录一、计算机1.计算机基础(1)计算机组成原理(2)计算机网络(3)数据库(4)编译原理(5)离散数学2.软件开发(1)编程词汇(2)开发术语(3)Linux(4)软件3.就业领域(1)职场(2)芯片(3)自动驾驶(4)嵌入式硬件4.深度学习(1)论文(2)深度学习DL(3)计算机视觉CV(4)自然语言处理NLP(5)推荐系统(6)计算机图形学二、数学三、机械、材料四、医药五、英美计量单位一
- 一体式 IO 模块助力 PLC,开启纺织机自动化高效新篇章
明达技术
自动化运维
在当下纺织行业竞争愈发激烈的大环境中,提升生产效率、降低运营成本成为企业在市场中脱颖而出的关键。传统纺织机依赖人工操作和离散控制的模式,不仅效率低下,还存在诸多问题,如设备停机频繁、能耗居高不下、维护成本不断攀升等。而随着工业自动化技术的飞速发展,明达技术推出MR20一体式IO模块与PLC的深度融合,为纺织机实现高效连续自动化作业提供了创新且可行的解决方案。传统困境多设备协同难题:纺织生产流程包含
- 人工智能之数学基础:对线性代数中逆矩阵的思考?
每天五分钟玩转人工智能
机器学习深度学习之数学基础线性代数人工智能矩阵机器学习逆矩阵向量
本文重点逆矩阵是线性代数中的一个重要概念,它在线性方程组、矩阵方程、动态系统、密码学、经济学和金融学以及计算机图形学等领域都有广泛的应用。通过了解逆矩阵的定义、性质、计算方法和应用,我们可以更好地理解和应用线性代数知识,解决各种实际问题。关于逆矩阵的思考现在我们有一个计算过程如上所示,我们知道矩阵的作用就是函数,向量a先经过矩阵1进行函数作用,然后再经过矩阵2函数作用最后可以得到输出向量c,这个过
- 00计算机视觉学习内容
依旧阳光的老码农
计算机视觉计算机视觉人工智能
计算机视觉(ComputerVision)开发需要掌握数学基础、编程语言、图像处理、机器学习、深度学习等多个方面的知识。以下是一个系统的学习路线:1️⃣数学基础(核心理论支撑)计算机视觉涉及很多数学概念,以下是必备数学知识:✅线性代数(矩阵运算是计算机视觉的核心)向量、矩阵运算(加减、乘法、转置)特征值与特征向量SVD(奇异值分解),用于图像压缩、降维齐次坐标变换(用于3D计算机视觉)✅概率统计(
- 01计算机视觉学习计划
依旧阳光的老码农
计算机视觉计算机视觉人工智能
计算机视觉系统学习计划(3-6个月)本计划按照数学→编程→图像处理→机器学习→深度学习→3D视觉→项目实战的顺序,确保从基础到高级,结合理论和实践。第一阶段(第1-2个月):基础夯实✅目标:掌握数学基础、Python/C++编程、基本图像处理1️⃣数学基础(2周)每日2小时线性代数:矩阵运算、特征值分解(推荐《线性代数及其应用》)概率统计:高斯分布、贝叶斯定理微积分:偏导数、梯度下降傅里叶变换:图
- 机器学习——使用分类特征的一种独热编码,
小卷心菜.
机器学习人工智能
在我们目前看到的例子中,每个特性只能具有两个可能的值中的一个,耳朵形状不是尖的就是软的,脸型不是圆就是不圆,胡须不是存在就是不存在,但是如果特性可以具有两个以上的离散值呢?如何使用一个热编码来解决这样的特性?下图是我们宠物收养中心申请的新培训集,所有的数据都是一样的,除了耳形特征有尖软之外还有椭圆形,所以这个特征仍然是一个分类值特征,但它可以有三个可能的值,而不仅仅是两个可能的值,这意味着当你在这
- 深度学习 -- 逻辑回归 PyTorch实现逻辑回归
冲鸭嘟嘟可
深度学习逻辑回归python人工智能
前言线性回归解决的是回归问题,而逻辑回归解决的是分类问题,这两种问题的区别是前者的目标属性是连续的数值类型,而后者的目标属性是离散的标称类型。可以将逻辑回归视为神经网络的一个神经元,因此学习逻辑回归能帮助理解神经网络的工作原理。什么是逻辑回归?逻辑回归是一种广义的线性回归分析模型,是监督学习的一种重要方法,主要用于二分类问题,但也可以用于多分类问题。逻辑回归的主要思想是,对于一个二分类问题,先根据
- 深圳传音控股AI算法岗内推
飞300
人工智能pythonjava业界资讯
1扎实的数学基础,熟练掌握机器学习相关的数学知识。2熟悉常用的机器学习算法,掌握常用的深度学习模型与编程实践。3熟悉Pytorch或TensorFlow等深度学习框架,有一定项目经验。4良好的沟通协调能力,执着的专业精神。5参与部门AI创新项目,包括自动化测试平台、BPM流程管理等项目开发登录链接:transsion.zhiye.com/campus/jobs填写我的推荐码:EVHPB3投递,简历
- matlab拟合三维曲线方程,三维的离散点怎么进行三维曲线拟合
weixin_39877050
matlab拟合三维曲线方程
X=[83838311311383.5113.5113.5113.5114114.5115117.5117.510071100100.5101101.5101.5102102.5103103.5104.5104.5105.5103.571.5104.5106.5107107.5106107109110107.5108107.5115115.5116121.5121.5121.5130132.513
- matlab空间散点拟合曲线,matlab离散点拟合曲线
圣君阡陌
matlab空间散点拟合曲线
matlab曲线拟合与数值点标注实例_工程科技_专业资料。实例1:现已知两组...Matlab教程曲线拟合工具箱数学科学与技术学院胡金燕lionfr@曲线拟合定义在实际工程应用和科学实践中,经常需要寻求两个(或多个)变量间的关系,而......(p,x);%获得x点处对相应的y值plot(x,y,'r*',x,y1,'b');%画出离散点和拟合曲线xlabel('墨水浓度');ylabel('吸光
- 遗传算法基础讲解
HH予
深度学习
一、遗传算法基础1.什么是遗传算法?一种模拟生物进化过程的优化算法,基于达尔文的“自然选择”和“遗传学理论”。核心思想:通过选择(优胜劣汰)、交叉(基因重组)、变异(基因突变)操作,逐步逼近问题的最优解。2.为什么用遗传算法?适用性强:解决复杂的非线性、多峰、离散或连续优化问题。无需梯度信息:对目标函数的数学性质要求低,适合黑箱优化。全局搜索能力:通过种群并行搜索,避免陷入局部最优,适合多维优化。
- 【无标题】大模型智能涌现的数学本质与底层机制
调皮的芋头
AI编程神经网络人工智能机器学习AIGC
大模型智能涌现的数学本质与底层机制一、语言建模的数学基础大模型的核心任务是基于概率链式法则建模语言序列:P(w1,...,wn)=∏t=1nP(wt∣w10^{11})时出现能力相变相变示例:参数量级涌现能力数学机制10^9基础语法低维流形建模10^11多步推理高维空间路径积分10^13跨模态类比抽象概念解纠缠五、知识压缩的代数结构张量分解视角:模型权重矩阵(W\in\mathbb{R}^{d×d
- 人工智能之数学基础:矩阵的秩
每天五分钟玩转人工智能
机器学习深度学习之数学基础人工智能矩阵机器学习深度学习线性代数秩
本文重点矩阵的秩,作为矩阵理论中的一个核心概念,是连接矩阵性质与应用的重要桥梁。本文我们将学习矩阵秩的概念,通过矩阵的秩可以判断矩阵是否可逆等等,所以矩阵的秩是非常重要的一个概念。矩阵秩的概念秩定义为矩阵A的线性独立的行(或列)的最大数目。也就是说,如果把矩阵看成由行向量或列向量组成,那么矩阵的秩就是这些向量中极大线性无关组所含向量的个数。矩阵的秩定义为矩阵线性无关的行向量或者列向量的最大数量,表
- 搜广推校招面经二十八
Y1nhl
搜广推面经推荐算法求职招聘搜索引擎机器学习算法
蚂蚁推荐算法一、介绍损失函数、为什么分类和回归的损失函数不能共用损失函数的介绍见【搜广推校招面经十八】1.1.分类和回归损失函数不能共用的原因分类和回归任务的目标不同,因此它们的损失函数设计也存在本质区别:输出空间的不同回归任务:目标是预测一个连续值(如房价、温度等)。输出空间是连续的实数范围。分类任务:目标是预测离散的类别标签(如“猫”或“狗”)或者概率。输出空间通常是有限的类别集合。误差衡量方
- 词向量(Word Embedding)
呵呵,不解释868
easyui前端javascript
词向量(WordEmbedding)是一种将自然语言中的单词映射到连续的向量空间的技术,使得语义相似的单词在向量空间中彼此接近。这种技术是现代自然语言处理(NLP)任务的基础之一,广泛应用于文本分类、机器翻译、问答系统等。###一、词向量的基本原理####1.离散表示vs连续表示传统的自然语言处理方法通常使用离散表示(如one-hot编码)来表示单词。然而,这种方法存在以下问题:-**维度灾难**
- [自然语言处理基础]NumPy基本操作
Steve lu
自然语言处理NLP自然语言处理numpypythonconda人工智能机器学习深度学习
什么是NumPyNumPy是Python中科学计算的基本包。它是一个Python库,提供多维数组对象、各种派生对象(如掩码数组和矩阵)以及用于对数组进行快速操作的各种例程,包括数学、逻辑、形状操作、排序、选择、I/O、离散傅里叶变换、基本线性代数、基本统计运算、随机模拟等等。NumPy数组在创建时具有固定大小,这与Python列表(可以动态增长)不同。更改数组的大小ndarray将创建新数组并删除
- 《信息学奥赛一本通 编程启蒙C++版》3431-3435(5题)
dllglvzhenfeng
小学生C++编程入门小学生C++趣味编程创新c++开发语言一本通启蒙人工智能算法GESPCSP-J
3431:【例75.2】区间合并信息学奥赛一本通-编程启蒙(C++版)在线评测系统[例75.2]区间合并信息学奥赛一本通-编程启蒙(C++版)在线评测系统ACWing803.区间合并(C++)ACWing803.区间合并(C++)-CSDN博客算法基础之离散化&区间合并-c++&python算法基础之离散化&区间合并-c++&python_autoitem:add-CSDN博客ACwing803区
- 计算机基础面试(数据结构)
熊假猫威XStar
面试数据结构职场和发展
1.数组和链表的区别是什么?各自的优缺点是什么?专业解答:数组内存连续,支持随机访问,但插入删除效率低;链表内存离散,插入删除高效,但访问需遍历。初中生版:数组像排座位,按编号找人快,但中间加人麻烦;链表像自由组队,拉人容易,但找人得挨个问。2.什么是哈希表?如何解决哈希冲突?专业解答:哈希表通过键值映射实现快速存取。冲突解决方法:开放寻址法(找下一个空位)、链地址法(拉链表)。初中生版:哈希表像
- 集合论导引:第一递归定义定理
AI大模型应用之禅
DeepSeekR1&AI大模型与大数据javapythonjavascriptkotlingolang架构人工智能
集合论,递归定义,第一递归定义定理,数学基础,计算机科学,数据结构,算法设计1.背景介绍在计算机科学的蓬勃发展中,集合论作为基础数学分支,扮演着至关重要的角色。它为数据结构、算法设计、程序语言等领域提供了坚实的理论基础。其中,递归定义是集合论中一个重要的概念,它能够简洁地描述复杂集合的结构和性质。本文将深入探讨第一递归定义定理,揭示其背后的数学原理和计算机科学中的应用。2.核心概念与联系2.1集合
- DiNN学习笔记1-理论部分
瓜皮37
同态加密密码学信息安全神经网络
DiNN学习笔记1-理论部分背景知识机器学习即服务MLaaS中的全同态加密神经网络Fhe-DiNN中的默认设定Fhe-DiNN方案神经元中的计算离散神经网络DiNN评估步骤自举的引入激活函数的同态评估对TFHE的改进明文的打包密钥转换的前置动态变化的消息空间优化盲旋步骤DiNN方案的整体流程参考资料背景知识机器学习即服务机器学习即服务(MachineLearningasaService,MLaaS
- 规控算法工程师的技术图谱和学习路径
执于代码
开发者职业加速服务算法学习
规控算法工程师技术图谱与学习路径规控算法工程师(规划与控制算法工程师)是自动驾驶领域的核心岗位之一,涉及路径规划、行为决策、运动控制等多个技术模块。以下为技术图谱与学习路径的整合,结合行业需求和技术发展趋势。一、技术图谱核心模块数学基础线性代数:矩阵运算、向量空间、特征值分解(用于控制系统建模与优化)。微积分:梯度下降、泰勒展开、动态系统建模(支持控制算法推导)。概率论与统计学:贝叶斯理论、马尔可
- 图像算法工程师的技术图谱和学习路径
执于代码
开发者职业加速服务算法学习
01.图像算法图像算法工程师的技术图谱和学习路径涵盖了多个技术领域,从基础知识到高级算法,涉及计算机视觉、深度学习、图像处理、数学和编程等多个方面。以下是图像算法工程师的技术图谱和学习路径的详细总结。1.基础数学与编程数学基础:线性代数:矩阵运算、特征值、特征向量、奇异值分解(SVD)等概率论与统计:概率分布、贝叶斯定理、最大似然估计(MLE)、假设检验等微积分:导数、梯度、最优化方法(梯度下降、
- 推荐算法工程师的技术图谱和学习路径
执于代码
开发者职业加速服务推荐算法学习算法
推荐算法工程师的技术图谱和学习路径可以从多个维度进行概述,可以总结如下:一、技术图谱推荐算法工程师需要掌握的技术栈主要分为以下几个方面:数学基础:微积分、线性代数、概率论与统计学是推荐算法的基础,用于理解模型的数学原理和优化算法。高等数学、最优化理论、几何和图论等知识对于复杂模型的设计和优化至关重要。编程与数据结构:熟练掌握Python、Java等编程语言,具备良好的编程习惯和代码优化能力。掌握数
- 人工智能: 增广矩阵数学基础到综合实战!!!
小南AI学院
人工智能矩阵算法
1.增广矩阵一、基本概念增广矩阵是将系数矩阵AAA与常数项向量bbb并在一起形成的矩阵,记作[A∣b][A|b][A∣b]。例如,对于线性方程组:{x+2y=53x−y=1\begin{cases}x+2y=5\\3x-y=1\end{cases}{x+2y=53x−y=1其增广矩阵为:[A∣b]=(12∣53−1∣1)[A|b]=\begin{pmatrix}1&2&|&5\\3&-1&|&1\
- JAVA中的Enum
周凡杨
javaenum枚举
Enum是计算机编程语言中的一种数据类型---枚举类型。 在实际问题中,有些变量的取值被限定在一个有限的范围内。 例如,一个星期内只有七天 我们通常这样实现上面的定义:
public String monday;
public String tuesday;
public String wensday;
public String thursday
- 赶集网mysql开发36条军规
Bill_chen
mysql业务架构设计mysql调优mysql性能优化
(一)核心军规 (1)不在数据库做运算 cpu计算务必移至业务层; (2)控制单表数据量 int型不超过1000w,含char则不超过500w; 合理分表; 限制单库表数量在300以内; (3)控制列数量 字段少而精,字段数建议在20以内
- Shell test命令
daizj
shell字符串test数字文件比较
Shell test命令
Shell中的 test 命令用于检查某个条件是否成立,它可以进行数值、字符和文件三个方面的测试。 数值测试 参数 说明 -eq 等于则为真 -ne 不等于则为真 -gt 大于则为真 -ge 大于等于则为真 -lt 小于则为真 -le 小于等于则为真
实例演示:
num1=100
num2=100if test $[num1]
- XFire框架实现WebService(二)
周凡杨
javawebservice
有了XFire框架实现WebService(一),就可以继续开发WebService的简单应用。
Webservice的服务端(WEB工程):
两个java bean类:
Course.java
package cn.com.bean;
public class Course {
private
- 重绘之画图板
朱辉辉33
画图板
上次博客讲的五子棋重绘比较简单,因为只要在重写系统重绘方法paint()时加入棋盘和棋子的绘制。这次我想说说画图板的重绘。
画图板重绘难在需要重绘的类型很多,比如说里面有矩形,园,直线之类的,所以我们要想办法将里面的图形加入一个队列中,这样在重绘时就
- Java的IO流
西蜀石兰
java
刚学Java的IO流时,被各种inputStream流弄的很迷糊,看老罗视频时说想象成插在文件上的一根管道,当初听时觉得自己很明白,可到自己用时,有不知道怎么代码了。。。
每当遇到这种问题时,我习惯性的从头开始理逻辑,会问自己一些很简单的问题,把这些简单的问题想明白了,再看代码时才不会迷糊。
IO流作用是什么?
答:实现对文件的读写,这里的文件是广义的;
Java如何实现程序到文件
- No matching PlatformTransactionManager bean found for qualifier 'add' - neither
林鹤霄
java.lang.IllegalStateException: No matching PlatformTransactionManager bean found for qualifier 'add' - neither qualifier match nor bean name match!
网上找了好多的资料没能解决,后来发现:项目中使用的是xml配置的方式配置事务,但是
- Row size too large (> 8126). Changing some columns to TEXT or BLOB
aigo
column
原文:http://stackoverflow.com/questions/15585602/change-limit-for-mysql-row-size-too-large
异常信息:
Row size too large (> 8126). Changing some columns to TEXT or BLOB or using ROW_FORMAT=DYNAM
- JS 格式化时间
alxw4616
JavaScript
/**
* 格式化时间 2013/6/13 by 半仙
[email protected]
* 需要 pad 函数
* 接收可用的时间值.
* 返回替换时间占位符后的字符串
*
* 时间占位符:年 Y 月 M 日 D 小时 h 分 m 秒 s 重复次数表示占位数
* 如 YYYY 4占4位 YY 占2位<p></p>
* MM DD hh mm
- 队列中数据的移除问题
百合不是茶
队列移除
队列的移除一般都是使用的remov();都可以移除的,但是在昨天做线程移除的时候出现了点问题,没有将遍历出来的全部移除, 代码如下;
//
package com.Thread0715.com;
import java.util.ArrayList;
public class Threa
- Runnable接口使用实例
bijian1013
javathreadRunnablejava多线程
Runnable接口
a. 该接口只有一个方法:public void run();
b. 实现该接口的类必须覆盖该run方法
c. 实现了Runnable接口的类并不具有任何天
- oracle里的extend详解
bijian1013
oracle数据库extend
扩展已知的数组空间,例:
DECLARE
TYPE CourseList IS TABLE OF VARCHAR2(10);
courses CourseList;
BEGIN
-- 初始化数组元素,大小为3
courses := CourseList('Biol 4412 ', 'Psyc 3112 ', 'Anth 3001 ');
--
- 【httpclient】httpclient发送表单POST请求
bit1129
httpclient
浏览器Form Post请求
浏览器可以通过提交表单的方式向服务器发起POST请求,这种形式的POST请求不同于一般的POST请求
1. 一般的POST请求,将请求数据放置于请求体中,服务器端以二进制流的方式读取数据,HttpServletRequest.getInputStream()。这种方式的请求可以处理任意数据形式的POST请求,比如请求数据是字符串或者是二进制数据
2. Form
- 【Hive十三】Hive读写Avro格式的数据
bit1129
hive
1. 原始数据
hive> select * from word;
OK
1 MSN
10 QQ
100 Gtalk
1000 Skype
2. 创建avro格式的数据表
hive> CREATE TABLE avro_table(age INT, name STRING)STORE
- nginx+lua+redis自动识别封解禁频繁访问IP
ronin47
在站点遇到攻击且无明显攻击特征,造成站点访问慢,nginx不断返回502等错误时,可利用nginx+lua+redis实现在指定的时间段 内,若单IP的请求量达到指定的数量后对该IP进行封禁,nginx返回403禁止访问。利用redis的expire命令设置封禁IP的过期时间达到在 指定的封禁时间后实行自动解封的目的。
一、安装环境:
CentOS x64 release 6.4(Fin
- java-二叉树的遍历-先序、中序、后序(递归和非递归)、层次遍历
bylijinnan
java
import java.util.LinkedList;
import java.util.List;
import java.util.Stack;
public class BinTreeTraverse {
//private int[] array={ 1, 2, 3, 4, 5, 6, 7, 8, 9 };
private int[] array={ 10,6,
- Spring源码学习-XML 配置方式的IoC容器启动过程分析
bylijinnan
javaspringIOC
以FileSystemXmlApplicationContext为例,把Spring IoC容器的初始化流程走一遍:
ApplicationContext context = new FileSystemXmlApplicationContext
("C:/Users/ZARA/workspace/HelloSpring/src/Beans.xml&q
- [科研与项目]民营企业请慎重参与军事科技工程
comsci
企业
军事科研工程和项目 并非要用最先进,最时髦的技术,而是要做到“万无一失”
而民营科技企业在搞科技创新工程的时候,往往考虑的是技术的先进性,而对先进技术带来的风险考虑得不够,在今天提倡军民融合发展的大环境下,这种“万无一失”和“时髦性”的矛盾会日益凸显。。。。。。所以请大家在参与任何重大的军事和政府项目之前,对
- spring 定时器-两种方式
cuityang
springquartz定时器
方式一:
间隔一定时间 运行
<bean id="updateSessionIdTask" class="com.yang.iprms.common.UpdateSessionTask" autowire="byName" />
<bean id="updateSessionIdSchedule
- 简述一下关于BroadView站点的相关设计
damoqiongqiu
view
终于弄上线了,累趴,戳这里http://www.broadview.com.cn
简述一下相关的技术点
前端:jQuery+BootStrap3.2+HandleBars,全站Ajax(貌似对SEO的影响很大啊!怎么破?),用Grunt对全部JS做了压缩处理,对部分JS和CSS做了合并(模块间存在很多依赖,全部合并比较繁琐,待完善)。
后端:U
- 运维 PHP问题汇总
dcj3sjt126com
windows2003
1、Dede(织梦)发表文章时,内容自动添加关键字显示空白页
解决方法:
后台>系统>系统基本参数>核心设置>关键字替换(是/否),这里选择“是”。
后台>系统>系统基本参数>其他选项>自动提取关键字,这里选择“是”。
2、解决PHP168超级管理员上传图片提示你的空间不足
网站是用PHP168做的,反映使用管理员在后台无法
- mac 下 安装php扩展 - mcrypt
dcj3sjt126com
PHP
MCrypt是一个功能强大的加密算法扩展库,它包括有22种算法,phpMyAdmin依赖这个PHP扩展,具体如下:
下载并解压libmcrypt-2.5.8.tar.gz。
在终端执行如下命令: tar zxvf libmcrypt-2.5.8.tar.gz cd libmcrypt-2.5.8/ ./configure --disable-posix-threads --
- MongoDB更新文档 [四]
eksliang
mongodbMongodb更新文档
MongoDB更新文档
转载请出自出处:http://eksliang.iteye.com/blog/2174104
MongoDB对文档的CURD,前面的博客简单介绍了,但是对文档更新篇幅比较大,所以这里单独拿出来。
语法结构如下:
db.collection.update( criteria, objNew, upsert, multi)
参数含义 参数  
- Linux下的解压,移除,复制,查看tomcat命令
y806839048
tomcat
重复myeclipse生成webservice有问题删除以前的,干净
1、先切换到:cd usr/local/tomcat5/logs
2、tail -f catalina.out
3、这样运行时就可以实时查看运行日志了
Ctrl+c 是退出tail命令。
有问题不明的先注掉
cp /opt/tomcat-6.0.44/webapps/g
- Spring之使用事务缘由(3-XML实现)
ihuning
spring
用事务通知声明式地管理事务
事务管理是一种横切关注点。为了在 Spring 2.x 中启用声明式事务管理,可以通过 tx Schema 中定义的 <tx:advice> 元素声明事务通知,为此必须事先将这个 Schema 定义添加到 <beans> 根元素中去。声明了事务通知后,就需要将它与切入点关联起来。由于事务通知是在 <aop:
- GCD使用经验与技巧浅谈
啸笑天
GC
前言
GCD(Grand Central Dispatch)可以说是Mac、iOS开发中的一大“利器”,本文就总结一些有关使用GCD的经验与技巧。
dispatch_once_t必须是全局或static变量
这一条算是“老生常谈”了,但我认为还是有必要强调一次,毕竟非全局或非static的dispatch_once_t变量在使用时会导致非常不好排查的bug,正确的如下: 1
- linux(Ubuntu)下常用命令备忘录1
macroli
linux工作ubuntu
在使用下面的命令是可以通过--help来获取更多的信息1,查询当前目录文件列表:ls
ls命令默认状态下将按首字母升序列出你当前文件夹下面的所有内容,但这样直接运行所得到的信息也是比较少的,通常它可以结合以下这些参数运行以查询更多的信息:
ls / 显示/.下的所有文件和目录
ls -l 给出文件或者文件夹的详细信息
ls -a 显示所有文件,包括隐藏文
- nodejs同步操作mysql
qiaolevip
学习永无止境每天进步一点点mysqlnodejs
// db-util.js
var mysql = require('mysql');
var pool = mysql.createPool({
connectionLimit : 10,
host: 'localhost',
user: 'root',
password: '',
database: 'test',
port: 3306
});
- 一起学Hive系列文章
superlxw1234
hiveHive入门
[一起学Hive]系列文章 目录贴,入门Hive,持续更新中。
[一起学Hive]之一—Hive概述,Hive是什么
[一起学Hive]之二—Hive函数大全-完整版
[一起学Hive]之三—Hive中的数据库(Database)和表(Table)
[一起学Hive]之四-Hive的安装配置
[一起学Hive]之五-Hive的视图和分区
[一起学Hive
- Spring开发利器:Spring Tool Suite 3.7.0 发布
wiselyman
spring
Spring Tool Suite(简称STS)是基于Eclipse,专门针对Spring开发者提供大量的便捷功能的优秀开发工具。
在3.7.0版本主要做了如下的更新:
将eclipse版本更新至Eclipse Mars 4.5 GA
Spring Boot(JavaEE开发的颠覆者集大成者,推荐大家学习)的配置语言YAML编辑器的支持(包含自动提示,