- 莫队算法 —— 将暴力玩出花
秒啦
算法
莫队算法——将暴力玩出花一、为什么需要莫队?——暴力法的瓶颈我们已经学会了用分块处理一些在线的区间问题。现在,我们来看一类特殊的离线区间查询问题。“离线”意味着我们可以把所有查询先读进来,再按我们喜欢的顺序去处理它们。思考一个问题:给定一个长度为N的数组,M次询问。每次询问一个区间[l,r],问区间内有多少种数字至少出现了2次?那我们回到最朴素的暴力。纯暴力:对于每个询问(l,r),都for一遍,
- 响应式API和非响应式API
响应式API与非响应式API的核心区别在于数据流处理方式、触发机制、资源利用率以及适用场景。以下是具体对比分析:一、数据流与处理模式响应式API异步与事件驱动:数据流通过事件触发自动处理,无需手动干预。例如,当数据源(如股票价格)更新时,系统立即推送变化并触发相应的界面更新[1][8]。流式处理:支持按需分块处理数据,避免一次性加载大量数据到内存。例如,SpringWebFlux的Flux可以每秒
- 华为园区网经典三层架构配置模板(含汇聚、核心)
网络工程师俱乐部
网络网络工程师华为认证
号主:老杨丨11年资深网络工程师,更多网工提升干货,请关注公众号:网络工程师俱乐部这一篇直接上华为园区网的经典三层架构配置模板,重点覆盖:核心层(双核心VRRP)汇聚层(VLAN汇聚+上联三层)接入层简要说明每层配置关键点,按模块分块直给,拎出来就能用适合小中型企业园区网部署场景,拿去直接能拉实验。场景说明&拓扑结构典型企业园区网三层架构:接入层只做VLAN接入,不三层,不配置网关汇聚层做VLAN
- 基础RAG实现,最佳入门选择(四)
人工智能
RAG中的上下文丰富检索,检索增强生成(RAG)通过从外部来源检索相关知识来增强AI响应。传统的检索方法返回孤立的文本块,这可能导致答案不完整。为了解决这个问题,引入了上下文丰富检索,它确保检索到的信息包括相邻的块以获得更好的一致性。-数据摄取:从PDF中提取文本。-带有重叠上下文的分块:将文本拆分为重叠的块以保留上下文。-嵌入创建:将文本块转换为数字表示。-上下文感知检索:检索相关块及其邻居以获
- Chonkie:一个极速且轻量级文本分块的革命者,解锁 RAG 分块多种策略
程序员笑武
prompt语言模型人工智能开源知识图谱
Chonkie是为RAG任务设计的轻量级文本分块库,以快速性能和易于使用著称,旨在解决传统文本分块库的效率和体积问题。核心特点包括多种分块器、9.7MB的轻量级安装、以及优化的分块速度。通过Tiktoken、预计算缓存等技术实现高效分块,性能远超竞争对手。本文详细介绍了Chonkie文档分割库的功能、安装方法、代码示例、设计理念、常见问题解答,助力RAG提升性能。简介Chonkie是一个用于RAG
- 无人机数据处理系统设计与难点
云卓SKYDROID
无人机高科技人工智能科普云卓科技
一、系统设计要点1.数据采集层多源传感器集成支持RGB相机、多光谱/高光谱相机、LiDAR、热成像仪、RTK/PPK定位模块等。自适应采集策略动态调整飞行高度、航速、重叠率,适应地形与任务需求。元数据绑定时间戳、GPS位置、IMU姿态角、传感器参数同步存储。2.数据传输与存储边缘端预处理实时压缩:使用H.265或JPEG2000降低传输带宽。数据分块:将大文件拆分为时空分块。混合存储架构plain
- 前端vue js 使用插件 spark-md5 计算文件MD5值并封装成Promise异步调用方法
低级前端
Vue学习Vue3学习+实战uniappjavascript前端vue.jsspark开发语言
1.依赖:需要安装spark-md5npminstall--savespark-md52.代码分析1.功能:该函数接收一个File对象,将其分块(每块2MB)读取,并使用spark-md5计算整个文件的MD5哈希值。返回一个Promise,成功时解析为MD5字符串,失败时拒绝并返回错误信息。2.关键点:分块处理:通过FileReader逐块读取文件,避免一次性加载大文件导致内存问题。兼容性:处理了
- OPENPPP2 内置 SIMD-AES-128-CFB 算法实现分析及优化路线
liulilittle
MarkdownExtensionC/C++算法网络协议AES安全密码学网络通信
引用源:OPENPPP2/simd_aes_128_cfb.cpp核心组件结构图AES-128-CFB加密系统密钥扩展CFB加密CFB解密加载初始密钥10轮密钥扩展使用aeskeygenassist字节移位与异或初始化反馈寄存器处理完整块处理部分块初始化反馈寄存器处理完整块处理部分块块加密块加密AES加密核心初始轮密钥加9轮AESENC最终轮AESENCLAST详细流程分析一、密钥扩展流程(aes
- 为 AI 编写文档:最佳实践
llm知识管理写作
Bruce:LLM时代要为AI阅读改变写作习惯。将图片/复杂排版文档转化为LLM可读格式(如Markdown)AI友好写作原则(为AI写作)1.内容清晰、结构化、显式表达2.每段内容应自包含、易分块理解3.使用统一术语,增强语义匹配4.图表信息应有文字说明5.使用语义HTML/Markdown,避免PDF、复杂UI6.内容层级清晰,上下文明确7.明确前提与步骤,不假设读者已知8.记录具体错误信息,
- Vue3组合式API深度解析:模式、实践与架构级应用
桂月二二
架构
一、组合式API设计哲学1.1响应式编程演进1.2组合式特性对比表特性选项式API组合式API优势分析代码组织按选项分块逻辑聚合高内聚低耦合类型推导有限支持完整TS支持开发体验提升60%逻辑复用Mixins混入自定义Hook降低复杂度50%生命周期固定钩子动态注册灵活度提升80%响应式追踪隐式追踪显式声明可维护性增强70%二、核心响应式机制剖析2.1响应式系统实现//简化的响应式核心实现class
- 大模型(LLMs)RAG 版面分析------文本分块面
xianghan收藏册
AI大模型人工智能transformerchatgpt自然语言处理
一、为什么需要对文本分块?使用大型语言模型(LLM)时,切勿忽略文本分块的重要性,其对处理结果的好坏有重大影响。考虑以下场景:你面临一个几百页的文档,其中充满了文字,你希望对其进行摘录和问答式处理。在这个流程中,最初的一步是提取文档的嵌入向量,但这样做会带来几个问题:信息丢失的风险:试图一次性提取整个文档的嵌入向量,虽然可以捕捉到整体的上下文,但也可能会忽略掉许多针对特定主题的重要信息,这可能会导
- 大模型(LLMs)RAG 版面分析——文本分块面
AI Echoes
mysql数据库
大模型(LLMs)RAG版面分析——文本分块面一、为什么需要对文本分块?二、能不能介绍一下常见的文本分块方法?2.1一般的文本分块方法2.2正则拆分的文本分块方法2.3SpacyTextSplitter方法2.4基于langchain的CharacterTextSplitter方法2.5基于langchain的递归字符切分方法2.6HTML文本拆分方法2.7Mrrkdown文本拆分方法2.8Pyt
- 【AI大模型学习路线】第二阶段之RAG基础与架构——第九章(向量数据库常见算法)Product Quantization?
985小水博一枚呀
人工智能学习数据库算法语言模型
【AI大模型学习路线】第二阶段之RAG基础与架构——第九章(向量数据库常见算法)ProductQuantization?【AI大模型学习路线】第二阶段之RAG基础与架构——第九章(向量数据库常见算法)ProductQuantization?文章目录【AI大模型学习路线】第二阶段之RAG基础与架构——第九章(向量数据库常见算法)ProductQuantization?前言1.算法原理1.1向量分块与
- Grounding Language Model with Chunking‑Free In‑Context Retrieval (CFIC)
steven~~~
nlp语言模型人工智能自然语言处理
一读即懂这篇ACL2024文章介绍了CFIC,一种新的无块文档上下文检索方法,用于提升Retrieval‑Augmented Generation(RAG)任务的“证据定位”能力。问题是什么?传统RAG会先将文档分块(chunk)再检索,但这种分块会打断语义连贯性、引入噪音,并限制检索精度([aclanthology.org][1],[chatpaper.com][2])。CFIC的创新做法?跳过
- 60. Zip_Tar文件压缩与解压
丰收连山
前端pythonjavascriptjava网络开发语言
一、zip文件操作zipfile模块基础用法概念定义zipfile是Python标准库中用于处理ZIP压缩文件的模块,提供了创建、读取、写入和提取ZIP文件的功能。使用场景批量压缩多个文件解压接收到的ZIP文件检查ZIP文件内容向现有ZIP文件添加新文件常见注意事项路径处理建议使用绝对路径大文件操作时建议分块处理中文文件名需要确认编码格式操作完成后需要关闭ZIP文件示例代码importzipfil
- 计算机操作系统 第四章练习
Jasmin Tin Wei
计算机操作系统
2.(单选题)某分页存储管理系统中,逻辑地址的长度为24位,其中页号占14位,则主存的分块大小应该是____字节。A.224B.214C.210D.22049.(单选题)系统出现“抖动”现象的主要原因是由于()引起的。A.采用页式存储管理策略B.置换算法选择不当C.内存容量不足D.交换的信息量太大我的答案:B:置换算法选择不当;正确答案:B:置换算法选择不当;
- Ghost Downloader多线程下载器 v3.5.13 无限制版
小天源
GhostDownloader下载器多线程多任务下载插件下载中间件
[软件名称]:GhostDownloader多线程下载器v3.5.13[软件大小]:32.6MB[下载通道]:夸克盘|迅雷盘|百度盘1.0软件介绍GhostDownloaderv3.5.13无限制版⚡多线程下载|断点续传|智能分块核心优势✔Python开发:轻量级运行,零资源占用✔智能分块:仿IDM多线程加速,无需文件合并✔断点续传:网络中断后自动恢复下载进度✔文件校验:确保下载文件完整无误✔下载
- 文本存入向量数据库流程
长勺
AI大模型数据库开发语言
流程四部曲:把文字变成数学冰淇淋1️⃣第一步:文字切块→像剁肉馅想象你拿到一本《中华美食大全》,直接整本塞冰箱肯定不行。你要用"文本分块刀法"切成小肉块:✂️固定长度切:每300字切一刀(像切香肠)语义饺子法:按自然段落/章节包饺子(比如"川菜篇"切一块)三明治切法:每段留20%重叠(防止肉馅漏掉关键调料)举个栗子:"宫保鸡丁的做法:先切丁...最后撒花生。鲁菜特点是..."↓切成→["宫保鸡丁做
- 经典论文阅读《A Framework for Unifying Reordering Transformations》《统一重排序变换的框架》
好好学习啊天天向上
自动性能优化
1)摘要我们提出了一个用于统一迭代重排序变换的框架,这些变换包括循环交换、循环分布、倾斜、分块、索引集拆分和语句重排序。该框架基于这样一种思想:变换可以表示为将原始迭代空间映射到新迭代空间的调度。框架旨在为变换提供一种统一的表示和推理方式。作为框架的一部分,我们提供了辅助构建和使用调度的算法,特别是用于检验调度合法性、对齐调度以及为调度生成优化代码的算法。2)优化编译器会对语句的迭代进行重新排序,
- 多线程下载视频
老二的意大利炮
springbootIDEASpringjava多线程
多线程下载视频具体思路文件分块。文件分块大小(blockSize)=(文件大小+线程数-1)/线程数;确定每一个线程所要下载的文件的起始和结束位置。现假设为每个线程分别编号:0,1,2,3;则第一个线程负责的下载位置是:0*blockSize-(0+1)blockSize-1,第二个线程负责的下载位置是:1blockSize-(1+1)blockSize-1,以此类推第i个线程负责的下载位置是:i
- Cesium1.95中加载模型过多导致内存溢出的解决方案(服务端层面、代码层面、浏览器层面)
duansamve
cesiumchrome
针对Chrome浏览器加载Cesium1.95时因GLB模型和图片过多导致内存溢出的问题,以下是涵盖服务端、代码层和浏览器层的完整优化方案,结合性能瓶颈分析和具体实施策略:一、服务端优化(减少传输与解析压力)1、模型格式转换GLB→3DTiles:将大规模GLB模型转换为3DTiles格式,实现分块加载和视锥体裁剪。使用Cesiumion或gltf-pipeline工具转换,降低单次加载内存压力。
- 【Java】 Springboot+Vue 大文件断点续传
M_Snow
javaspringbootvue
【Java】Springboot+Vue大文件断点续传,【Java】Springboot+Vue大文件分块上传,【Java】Springboot+Vue大文件分片上传,【Java】Springboot+Vue文件夹上传,【Java】Springboot+Vue大文件批量上传,【Java】Springboot+Vue大文件加密上传,【Java】Springboot+Vue大文件切片上传,【Java】
- 务必收藏!大模型常见面试题汇总与详解
AI-入门
深度学习prompt人工智能chatgptagi
今日,为大家分享大模型面试的相关知识点,喜欢的话记得收藏、关注和点赞哦。面试精选RAG技术体系的总体思路数据预处理。分块(此步骤极为关键,有时能决定模型的效果)。文本向量化。query向量化。向量检索。重排。将query与检索内容输入LLM,最终输出结果。使用外挂知识库主要为了解决什么问题克服遗忘问题。提升回答的准确性、权威性和时效性。解决通用模型在一些小众领域未涉猎的问题。提高可控性和可解释性,
- 多面体编译的循环分块
好好学习啊天天向上
自动性能优化
1)循环分块,是性能优化的重要步骤2)基于多面体模型的循环变换是程序自动并行化的热点,是解决程序自动并行变换的一种有效手段。循环变换将循环的迭代空间表示成空间多面体,并通过多面体上的几何操作达到分析和优化程序的目的。循环变换包括循环分块,循环交换,循环倾斜,循环合并等。3)循环分块是提升高速缓存命中率的一种有效变换策略,通过将大块的循环迭代拆解成若干较小的循环迭代块,减少内存单元的数据重用周期,进
- HTML5 浮动简介及特点
Fun星渊
html5csshtml
1.浮动简介浮动(float)浮动是一种布局手段,会使元素脱离文档流元素在文档流的时候,会分块元素,行内元素,行内块元素,各自都有一定的特点设置元素浮动,可以用float样式可选值:none默认值,不浮动left向左浮动right向右浮动设置浮动后的一些特点:(第一类特点)1、设置元素浮动后,元素会脱离文档流,就不会再占据原来在文档流的位置浮动元素后面的元素就向上2、设置元素浮动后,元素会尽可能向
- HTML 浮动
沐影y_
htmlcss
01.浮动简介浮动(float)浮动是一种布局手段,会使元素脱离文档流元素在文档流的时候,会分块元素,行内元素,行内块元素,各自都有一定的特点设置元素浮动,可以用float样式可选值:none默认值,不浮动left向左浮动right向右浮动设置浮动后的一些特点:(第一类特点)1、设置元素浮动后,元素会脱离文档流,就不会再占据原来在文档流的位置浮动元素后面的元素就向上2、设置元素浮动后,元素会尽可能
- 现代C++内容主要分块
Arthur...J
c++开发语言
现代C++内容主要分块1.语言基础(LanguageBasics)语法规则(Syntax)基本数据类型(BasicDataTypes)控制结构(ControlStructures)函数和参数(FunctionsandParameters)变量作用域与生命周期(ScopeandLifetime)2.面向对象编程(Object-OrientedProgramming)类和对象(ClassesandOb
- 开放世界RPG:无缝地图与动态任务的拓扑学架构
闲人编程
拓扑学架构开放世界RPG动态pygameNPC
目录开放世界RPG:无缝地图与动态任务的拓扑学架构引言第一章地图分块系统1.1动态加载算法1.2内存管理模型第二章任务拓扑网络2.1任务依赖图2.2动态可达性分析第三章NPC行为系统3.1行为森林架构3.2日程规划算法第四章动态事件系统4.1事件传播模型4.2玩家影响指标第五章任务生成算法5.1语义模板填充5.2动态难度调整第六章性能优化6.1异步加载策略6.2数据局部性优化第七章可视化调试7.1
- Python Pandas数据处理效率提升指南
超酷的站长
python学习pythonpandas开发语言
在数据分析中,Pandas是Python中最常用的库之一。然而,当处理大规模数据集时,Pandas的性能可能会受到限制,导致数据处理变得缓慢。为了提升Pandas的处理速度,我们可以采用多种优化策略,如数据类型优化、向量化操作、并行处理、分块读取等。本文将详细介绍几种常见的Pandas性能优化方法,帮助高效处理大量数据,减少计算时间。数据类型优化Pandas在读取数据时,会自动为每列选择默认的数据
- Node.js 后端开发:处理大文件上传的技巧
AI大模型应用实战
Java开发实战node.jsvim编辑器ai
Node.js后端开发:处理大文件上传的技巧关键词:Node.js、后端开发、大文件上传、流式处理、分块上传摘要:本文聚焦于Node.js后端开发中处理大文件上传的技巧。在当今数字化时代,大文件上传需求日益增长,如视频、高清图片等。然而,传统的文件上传方式在处理大文件时面临诸多挑战,如内存占用过高、上传中断等问题。文章详细介绍了大文件上传的核心概念、算法原理、数学模型,通过项目实战展示具体代码实现
- SQL的各种连接查询
xieke90
UNION ALLUNION外连接内连接JOIN
一、内连接
概念:内连接就是使用比较运算符根据每个表共有的列的值匹配两个表中的行。
内连接(join 或者inner join )
SQL语法:
select * fron
- java编程思想--复用类
百合不是茶
java继承代理组合final类
复用类看着标题都不知道是什么,再加上java编程思想翻译的比价难懂,所以知道现在才看这本软件界的奇书
一:组合语法:就是将对象的引用放到新类中即可
代码:
package com.wj.reuse;
/**
*
* @author Administrator 组
- [开源与生态系统]国产CPU的生态系统
comsci
cpu
计算机要从娃娃抓起...而孩子最喜欢玩游戏....
要让国产CPU在国内市场形成自己的生态系统和产业链,国家和企业就不能够忘记游戏这个非常关键的环节....
投入一些资金和资源,人力和政策,让游
- JVM内存区域划分Eden Space、Survivor Space、Tenured Gen,Perm Gen解释
商人shang
jvm内存
jvm区域总体分两类,heap区和非heap区。heap区又分:Eden Space(伊甸园)、Survivor Space(幸存者区)、Tenured Gen(老年代-养老区)。 非heap区又分:Code Cache(代码缓存区)、Perm Gen(永久代)、Jvm Stack(java虚拟机栈)、Local Method Statck(本地方法栈)。
HotSpot虚拟机GC算法采用分代收
- 页面上调用 QQ
oloz
qq
<A href="tencent://message/?uin=707321921&Site=有事Q我&Menu=yes">
<img style="border:0px;" src=http://wpa.qq.com/pa?p=1:707321921:1></a>
- 一些问题
文强chu
问题
1.eclipse 导出 doc 出现“The Javadoc command does not exist.” javadoc command 选择 jdk/bin/javadoc.exe 2.tomcate 配置 web 项目 .....
SQL:3.mysql * 必须得放前面 否则 select&nbs
- 生活没有安全感
小桔子
生活孤独安全感
圈子好小,身边朋友没几个,交心的更是少之又少。在深圳,除了男朋友,没几个亲密的人。不知不觉男朋友成了唯一的依靠,毫不夸张的说,业余生活的全部。现在感情好,也很幸福的。但是说不准难免人心会变嘛,不发生什么大家都乐融融,发生什么很难处理。我想说如果不幸被分手(无论原因如何),生活难免变化很大,在深圳,我没交心的朋友。明
- php 基础语法
aichenglong
php 基本语法
1 .1 php变量必须以$开头
<?php
$a=” b”;
echo
?>
1 .2 php基本数据库类型 Integer float/double Boolean string
1 .3 复合数据类型 数组array和对象 object
1 .4 特殊数据类型 null 资源类型(resource) $co
- mybatis tools 配置详解
AILIKES
mybatis
MyBatis Generator中文文档
MyBatis Generator中文文档地址:
http://generator.sturgeon.mopaas.com/
该中文文档由于尽可能和原文内容一致,所以有些地方如果不熟悉,看中文版的文档的也会有一定的障碍,所以本章根据该中文文档以及实际应用,使用通俗的语言来讲解详细的配置。
本文使用Markdown进行编辑,但是博客显示效
- 继承与多态的探讨
百合不是茶
JAVA面向对象 继承 对象
继承 extends 多态
继承是面向对象最经常使用的特征之一:继承语法是通过继承发、基类的域和方法 //继承就是从现有的类中生成一个新的类,这个新类拥有现有类的所有extends是使用继承的关键字:
在A类中定义属性和方法;
class A{
//定义属性
int age;
//定义方法
public void go
- JS的undefined与null的实例
bijian1013
JavaScriptJavaScript
<form name="theform" id="theform">
</form>
<script language="javascript">
var a
alert(typeof(b)); //这里提示undefined
if(theform.datas
- TDD实践(一)
bijian1013
java敏捷TDD
一.TDD概述
TDD:测试驱动开发,它的基本思想就是在开发功能代码之前,先编写测试代码。也就是说在明确要开发某个功能后,首先思考如何对这个功能进行测试,并完成测试代码的编写,然后编写相关的代码满足这些测试用例。然后循环进行添加其他功能,直到完全部功能的开发。
- [Maven学习笔记十]Maven Profile与资源文件过滤器
bit1129
maven
什么是Maven Profile
Maven Profile的含义是针对编译打包环境和编译打包目的配置定制,可以在不同的环境上选择相应的配置,例如DB信息,可以根据是为开发环境编译打包,还是为生产环境编译打包,动态的选择正确的DB配置信息
Profile的激活机制
1.Profile可以手工激活,比如在Intellij Idea的Maven Project视图中可以选择一个P
- 【Hive八】Hive用户自定义生成表函数(UDTF)
bit1129
hive
1. 什么是UDTF
UDTF,是User Defined Table-Generating Functions,一眼看上去,貌似是用户自定义生成表函数,这个生成表不应该理解为生成了一个HQL Table, 貌似更应该理解为生成了类似关系表的二维行数据集
2. 如何实现UDTF
继承org.apache.hadoop.hive.ql.udf.generic
- tfs restful api 加auth 2.0认计
ronin47
目前思考如何给tfs的ngx-tfs api增加安全性。有如下两点:
一是基于客户端的ip设置。这个比较容易实现。
二是基于OAuth2.0认证,这个需要lua,实现起来相对于一来说,有些难度。
现在重点介绍第二种方法实现思路。
前言:我们使用Nginx的Lua中间件建立了OAuth2认证和授权层。如果你也有此打算,阅读下面的文档,实现自动化并获得收益。SeatGe
- jdk环境变量配置
byalias
javajdk
进行java开发,首先要安装jdk,安装了jdk后还要进行环境变量配置:
1、下载jdk(http://java.sun.com/javase/downloads/index.jsp),我下载的版本是:jdk-7u79-windows-x64.exe
2、安装jdk-7u79-windows-x64.exe
3、配置环境变量:右击"计算机"-->&quo
- 《代码大全》表驱动法-Table Driven Approach-2
bylijinnan
java
package com.ljn.base;
import java.io.BufferedReader;
import java.io.FileInputStream;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.Collections;
import java.uti
- SQL 数值四舍五入 小数点后保留2位
chicony
四舍五入
1.round() 函数是四舍五入用,第一个参数是我们要被操作的数据,第二个参数是设置我们四舍五入之后小数点后显示几位。
2.numeric 函数的2个参数,第一个表示数据长度,第二个参数表示小数点后位数。
例如:
select cast(round(12.5,2) as numeric(5,2))  
- c++运算符重载
CrazyMizzz
C++
一、加+,减-,乘*,除/ 的运算符重载
Rational operator*(const Rational &x) const{
return Rational(x.a * this->a);
}
在这里只写乘法的,加减除的写法类似
二、<<输出,>>输入的运算符重载
&nb
- hive DDL语法汇总
daizj
hive修改列DDL修改表
hive DDL语法汇总
1、对表重命名
hive> ALTER TABLE table_name RENAME TO new_table_name;
2、修改表备注
hive> ALTER TABLE table_name SET TBLPROPERTIES ('comment' = new_comm
- jbox使用说明
dcj3sjt126com
Web
参考网址:http://www.kudystudio.com/jbox/jbox-demo.html jBox v2.3 beta [
点击下载]
技术交流QQGroup:172543951 100521167
[2011-11-11] jBox v2.3 正式版
- [调整&修复] IE6下有iframe或页面有active、applet控件
- UISegmentedControl 开发笔记
dcj3sjt126com
// typedef NS_ENUM(NSInteger, UISegmentedControlStyle) {
// UISegmentedControlStylePlain, // large plain
&
- Slick生成表映射文件
ekian
scala
Scala添加SLICK进行数据库操作,需在sbt文件上添加slick-codegen包
"com.typesafe.slick" %% "slick-codegen" % slickVersion
因为我是连接SQL Server数据库,还需添加slick-extensions,jtds包
"com.typesa
- ES-TEST
gengzg
test
package com.MarkNum;
import java.io.IOException;
import java.util.Date;
import java.util.HashMap;
import java.util.Map;
import javax.servlet.ServletException;
import javax.servlet.annotation
- 为何外键不再推荐使用
hugh.wang
mysqlDB
表的关联,是一种逻辑关系,并不需要进行物理上的“硬关联”,而且你所期望的关联,其实只是其数据上存在一定的联系而已,而这种联系实际上是在设计之初就定义好的固有逻辑。
在业务代码中实现的时候,只要按照设计之初的这种固有关联逻辑来处理数据即可,并不需要在数据库层面进行“硬关联”,因为在数据库层面通过使用外键的方式进行“硬关联”,会带来很多额外的资源消耗来进行一致性和完整性校验,即使很多时候我们并不
- 领域驱动设计
julyflame
VODAO设计模式DTOpo
概念:
VO(View Object):视图对象,用于展示层,它的作用是把某个指定页面(或组件)的所有数据封装起来。
DTO(Data Transfer Object):数据传输对象,这个概念来源于J2EE的设计模式,原来的目的是为了EJB的分布式应用提供粗粒度的数据实体,以减少分布式调用的次数,从而提高分布式调用的性能和降低网络负载,但在这里,我泛指用于展示层与服务层之间的数据传输对
- 单例设计模式
hm4123660
javaSingleton单例设计模式懒汉式饿汉式
单例模式是一种常用的软件设计模式。在它的核心结构中只包含一个被称为单例类的特殊类。通过单例模式可以保证系统中一个类只有一个实例而且该实例易于外界访问,从而方便对实例个数的控制并节约系统源。如果希望在系统中某个类的对象只能存在一个,单例模式是最好的解决方案。
&nb
- logback
zhb8015
loglogback
一、logback的介绍
Logback是由log4j创始人设计的又一个开源日志组件。logback当前分成三个模块:logback-core,logback- classic和logback-access。logback-core是其它两个模块的基础模块。logback-classic是log4j的一个 改良版本。此外logback-class
- 整合Kafka到Spark Streaming——代码示例和挑战
Stark_Summer
sparkstormzookeeperPARALLELISMprocessing
作者Michael G. Noll是瑞士的一位工程师和研究员,效力于Verisign,是Verisign实验室的大规模数据分析基础设施(基础Hadoop)的技术主管。本文,Michael详细的演示了如何将Kafka整合到Spark Streaming中。 期间, Michael还提到了将Kafka整合到 Spark Streaming中的一些现状,非常值得阅读,虽然有一些信息在Spark 1.2版
- spring-master-slave-commondao
王新春
DAOspringdataSourceslavemaster
互联网的web项目,都有个特点:请求的并发量高,其中请求最耗时的db操作,又是系统优化的重中之重。
为此,往往搭建 db的 一主多从库的 数据库架构。作为web的DAO层,要保证针对主库进行写操作,对多个从库进行读操作。当然在一些请求中,为了避免主从复制的延迟导致的数据不一致性,部分的读操作也要到主库上。(这种需求一般通过业务垂直分开,比如下单业务的代码所部署的机器,读去应该也要从主库读取数