- 为什么国内的教科书编写的如此晦涩?
点云SLAM
数学学习方法
很多人在学习过程中都有类似感受:中国的教科书“难搞懂”。造成这种现象的原因主要可以从以下几个方面来分析:1.教学目标更重“系统性”而非“启发性”中国教科书通常强调知识的完整性、系统性、逻辑性,但不强调引导性和直觉体验。很多内容是按照“定义→定理→推论”的顺序展开,对初学者不友好,因为缺少“为什么要学”“生活中的例子”“背后直觉”的铺垫。国外教材比如《Calculus》(Stewart)会在每章开头
- GO语言中二次插值算法 实现预测
基础介绍:给定给定区间,函数连续且,那么根据介值定理,函数必然在区间内有根。二分法:将区间不断二分,使端点不断逼近零点。下一次迭代的区间为或,其中。割线法(线性插值):基本思想是用弦的斜率近似代替目标函数的切线斜率,并用割线与横轴交点的横坐标作为方程式的根的近似。即给定两个点,。其割线方程为,那么令,x的值即为下一次迭代的结果。逆二次插值法:为割线法的进化版本。使用三个点确定一个二次函数,二次函数
- 分布式系统核心基石:CAP定理、BASE理论与一致性算法深度解析
Eqwaak00
分布式系统设计实战算法pythonjava
一、CAP定理:分布式系统的设计边界1.1核心定义与经典三角CAP定理(Brewer'sTheorem)指出,在分布式系统中,一致性(Consistency)、可用性(Availability)、分区容错性(PartitionTolerance)三者不可兼得。(注:若需实际配图,可替换为Mermaid流程图或专业示意图)三大特性详解:一致性(C):所有节点在同一时间看到的数据完全相同(强一致性)。
- 如何在YashanDB数据库中保持数据一致性与完整性
数据库
在现代数据库管理系统中,确保数据的一致性与完整性是面临的主要挑战之一。这一挑战在高并发、高要求的数据操作场景中尤为突出。YashanDB作为一种高性能的分布式数据库,采用了多种技术手段以保持数据的一致性与完整性。本文将深入探讨YashanDB中实现数据一致性与完整性的核心技术原理,适用于对高并发和复杂事务有一定理解的数据库管理员(DBA)和开发人员。事务管理与ACID特性事务是数据库操作的基本单元
- AtCoder Beginner Contest 412(ABCDE)
前言回来喽!!前一阵子期末周快复习疯了,接下来还想准备数学建模,感觉高中都没这么忙过T^T。中间参加了一场百度之星的比赛,只AC了两题,感觉好难啊还是太菜了,希望能混个牌呜呜呜。图论和数论题好难,还得多练啊……一、A-TaskFailedSuccessfully#includeusingnamespacestd;typedeflonglongll;typedefpairpii;voidsolve(
- 余数定理问题和余数类问题的解法
wangychf
python抽象代数
一、引言Python里面有一个重要的求模运算符号“%”,作为一个小白,实验了好多次求模的运算,发现这个算法不同于一般的四则运算,其运算效率简直可以用神奇来形容。例如以当今知道的最大质数——梅森素数为例,进行求模计算,速度快得惊人。当前知道的最大的梅森素数是第51个梅森素数,也是迄今为止知道的最大的素数。它的表示为:2^82589933–1,如果用十进制打开,这个数有24862048位,是2018年
- 牛客周赛 Round 59(思维、构造、数论)
mldl_
数据结构与算法算法数论逆序数构造对角线处理范德蒙恒等式
文章目录牛客周赛Round59(思维、构造、数论)A.TDB.你好,这里是牛客竞赛C.逆序数(思维)D.构造mex(构造)E.小红的X型矩阵F.小红的数组回文值(数论、范德蒙恒等式)牛客周赛Round59(思维、构造、数论)E题,对于对角线的处理,常用。F题,范德蒙恒等式推论的应用。A.TD简单数学题。#includeusingnamespacestd;intmain(){doublen,m;ci
- 脉冲编码调制(PCM)
2301_80709554
pcm
#打倒拦路虎#脉冲编码调制:一种把模拟数据变换为数字信号的数字技术(模拟数据数字化技术)脉冲编码调制过程:取样->量化->编码取样:本质上是在离散时间点上获取模拟信号的瞬时电平值(幅度值),获得的值为连续幅度值。根据莱奎斯特取样定理,以大于等于模拟信号频率两倍的取样频率获得的样本空间就能恢复原理的模拟信号。量化:将抽样后的连续幅度值映射到有限个离散电平的过程,即幅度的离散化。例如:把语音样本量化
- 洛谷P4317 花神的数论题题解
cwplh
题解算法图论
题目传送门本体接主要是对小粉兔大佬的题解的进一步解释。题目中让我们求∏i=1Nsum(i)\prod_{i=1}^N\operatorname{sum}(i)∏i=1Nsum(i),很明显不能直接暴力枚举求解,因此我们稍微归个类:把sum(i)\operatorname{sum}(i)sum(i)值相同的iii放在一起,假设sum(i)\operatorname{sum}(i)sum(i)值
- 深度探索:机器学习中的 条件生成对抗网络(Conditional GAN, CGAN)算法原理及其应用
目录1.引言与背景2.CGAN定理3.算法原理4.算法实现5.优缺点分析优点:缺点:6.案例应用7.对比与其他算法8.结论与展望1.引言与背景生成对抗网络(GenerativeAdversarialNetworks,GANs)作为一种深度学习框架,在无监督学习领域展现出强大的能力,特别在图像、音频、文本等复杂数据的生成任务中取得了显著成果。然而,原始GAN模型在生成过程中缺乏对生成样本特定属性的直
- NoSQL数据库的分布式存储优化
数据库管理艺术
nosql分布式数据库ai
NoSQL数据库的分布式存储优化关键词:NoSQL、分布式存储、数据分片、一致性哈希、CAP定理、读写优化、水平扩展摘要:本文深入探讨NoSQL数据库在分布式环境下的存储优化策略。我们将从基础概念出发,分析NoSQL数据库的架构特点,详细讲解分布式存储的核心算法和数学模型,并通过实际代码示例展示优化技术的实现。文章还将覆盖实际应用场景、工具推荐以及未来发展趋势,为读者提供全面的NoSQL分布式存储
- 运用逆元优化组合计算#数论
ysa051030
java算法数据结构
数论基础知识和模板-CSDN博客问题分析题目要求统计满足特定条件的排列数目。关键在于:从给定的数组中选择两个数作为n和m剩余的数必须能够组成n个m或m个n的结构计算所有可能的有效排列数目完整#includeusingnamespacestd;typedeflonglongLL;constLLMOD=1e9+7;//快速幂计算a^b%MODLLqpow(LLa,LLb){LLres=1;while(
- 数学建模_插值
wwer142526363
数学建模
什么是插值拉格朗日插值法埃尔米特插值法三次样条插值法matlab应用分段三次埃尔米特插值法三次样条插值法(更好更光滑二维插值详见上机篇什么是插值省略插值法定理拉格朗日插值法牛顿插值法省略埃尔米特插值法三次样条插值法省略样条插值法matlab应用分段三次埃尔米特插值法详见上机篇三次样条插值法(更好更光滑二维插值详见上机篇上机篇24分钟开始
- 自然数是否包含0
二分掌柜的
数学物理自然数
自然数是否包含0flyfish自然数是否包含0,本质是数学定义随学科需求演变的结果,数论继承了“从1计数”的历史传统,而集合论与逻辑为追求公理化完备性将0纳入。视角自然数包含0吗?核心理由数论/计数否(从1开始)符合“物体个数”的直观意义,避免0在素数分解、数论函数中引发逻辑例外。集合论/逻辑是(从0开始)空集基数对应0,通过集合后继构造自然数,满足公理化体系的完备性。数论与早期教材:自然数从1开
- 【分析学】从有限开覆盖定理出发 -- 实数系完备性
BlackPercy
分析学数学高等数学
目录有限开覆盖定理实数系完备性定理确界定理单调有界定理闭区间套定理聚点定理柯西收敛定理有限开覆盖定理开覆盖定义:设{Ui}i∈I\{U_i\}_{i\inI}{Ui}i∈I是一个开覆盖,即[a,b]⊆⋃i∈IUi[a,b]\subseteq\bigcup_{i\inI}U_i[a,b]⊆⋃i∈IUi,称⋃i∈IUi\bigcup_{i\inI}U_i⋃i∈IUi为闭区间[a,b][a,b][a,b
- 贝叶斯回归:从概率视角量化预测的不确定性
大千AI助手
人工智能Python#OTHER回归数据挖掘人工智能机器学习算法贝叶斯
本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!贝叶斯方法在回归问题中的应用被称为贝叶斯回归(BayesianRegression)。与传统频率派的线性回归(如最小二乘法)不同,贝叶斯回归的核心思想是:将回归参数(如权重系数)视为随机变量,通过贝叶斯定理结合先验分布和观测数据,推导出参数的后验分布,
- 深度解析基于贝叶斯的垃圾邮件分类
大千AI助手
人工智能Python#OTHER分类数据挖掘人工智能机器学习算法贝叶斯Bayes
贝叶斯垃圾邮件分类的核心逻辑是基于贝叶斯定理,利用邮件中的特征(通常是单词)来计算该邮件属于“垃圾邮件”或“非垃圾邮件”的概率,并根据概率大小进行分类。它是一种朴素贝叶斯分类器,因其假设特征(单词)之间相互独立而得名(虽然这在现实中不完全成立,但效果通常很好)。本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的
- 实数系的基本定理_11、实数的连续性(1)
weixin_39953102
实数系的基本定理
实数的连续性定理,图片来自网络。实数集合的连续性(简称实数的连续性或者实数的稠密性、实数的完备性)是实数系的一个基本特征,它是微积分学的坚实的理论基础.人们从不同的角度来描述和刻画实数集的完备性,得到了一连串的有关实数的连续性定理,其中包括:确界存在定理,闭区间套定理,单调有界收敛定理,聚点定理,有限覆盖定理,柯西准则,致密性定理等.定理1.1(确界存在定理,简称“确”)有上界数集必有上确界,有下
- 实数系的基本定理_七大实数理论与互推
weixin_39710288
实数系的基本定理
七大实数理论简介(一)确界原理定义1.1:是一个非空数集,是一个常数,若,有,则称是数集的一个上界。同理,若,有,则称是数集的一个下界。定义1.2:若是数集的一个上界,并且有,,满足,则称是数集的上确界。类似的,若是数集的一个下界,并且有,,满足,则称是数集的下确界。定理1.1:若数集有上确界,则上确界是唯一的。证明:使用反证法,若是数集的上确界,假设还有也是上确界。若,根据定义1.2的否定,取,
- 数学分析闭区间套定理_闭区间套定理在数学教学中的一个有趣应用
weixin_39725403
数学分析闭区间套定理
龙源期刊网http://www.qikan.com.cn闭区间套定理在数学教学中的一个有趣应用作者:宣渭峰来源:《青年与社会》2018年第30期摘要:实数集的不可数性在数学分析、实分析等课程中是一非常基本且重要的结论。传统的是利用对角线法证明(0,1)开区间中所有实数是不可数的,从而证明全体实数集的不可数性。文章主要应用实数完备性的六个等价命题之一——闭区间套定理,巧妙地证明了实数集的不可数性,该
- 解释神经网络的普适逼近定理(面试题200合集,中频、实用)
快撑死的鱼
算法工程师宝典(面试学习最新技术必备)深度学习人工智能
神经网络的普适逼近定理(UniversalApproximationTheorem,UAT)是理解为什么神经网络如此强大和灵活的理论基石之一。它为我们提供了信心,即在某些条件下,一个相对简单的神经网络结构原则上能够模拟出几乎任何复杂的函数。这个定理在深度学习领域中经常被提及,尤其是在讨论模型表达能力的时候。普适逼近定理(UniversalApproximationTheorem)概述普适逼近定理的
- 【网络安全】网络安全中的离散数学
flyair_China
安全架构
一、离散数学核心知识点与网络安全映射1.数论(NumberTheory)知识点安全应用场景实例说明质因数分解RSA公钥加密大整数分解难题(2048位密钥需数万年破解)模运算Diffie-Hellman密钥交换利用(gamodp)实现安全协商欧拉定理RSA加密/解密me*d≡m(modn)保障解密还原中国剩余定理高效解密优化RSA-CRT加速解密运算达70%2.代数结构(AlgebraicStruc
- 2024年03月CCF-GESP编程能力等级认证C++编程五级真题解析
码农StayUp
c++青少年编程CCFGESP
本文收录于专栏《C++等级认证CCF-GESP真题解析》,专栏总目录:点这里。订阅后可阅读专栏内所有文章。一、单选题(每题2分,共30分)第1题唯一分解定理描述的内容是()?A.任意整数都可以分解为素数的乘积B.每个合数都可以唯一分解为一系列素数的乘积C.两个不同的整数可以分解为相同的素数乘积D.以上都不对答案:B【考纲知识点】唯一分解定理【解析】任何一个大于1的整数n都可以分解成若干个素因数的连
- 数学分析(十八)-隐函数定理及其应用1-隐函数4:隐函数极值问题
u013250861
数学分析数学分析
f′(x)=−Fx(x,y)Fy(x,y)(5)f^{\prime}(x)=-\cfrac{F_{x}(x,y)}{F_{y}(x,y)}\quad\quad(5)f′(x)=−Fy(x,y)Fx(x,y)(5)y′′=−1Fy(Fxx+2Fxyy′+Fyyy′2)=2FxFyFxy−Fy2Fxx−Fx2FyyFy3,(
- 线性代数和c语言先学哪个,线性代数和哪个更有用?
段丞博
线性代数和c语言先学哪个
一、从数学与应用数学这个专业来分析下“线性代数”和“高等数学”这两块的内容,无论哪块知识在“考研究生数学科目中的考试”都会涉汲到的,而且有些专业的考试也包括概率论与数理统计这块知识。线性代数和哪个更有用?1、线性代数内容:行列式、矩阵、向量、线性方程组、特征值和特征向量、二次型。2、高等数学内容:函数·极限·连续、导数与微分、不定积分、定积分及广义积分、中值定理的证明、常微分方程、一元微积分的应用
- Python实现快速傅里叶变换(FFT)
haodawei123
工作总结
importnumpyasnpimportmatplotlib.pyplotasplt#采样点选择1400个,因为设置的信号频率分量最高为600赫兹,根据采样定理知采样频率要大于信号频率2倍,所以这里设置采#样频率为1400赫兹(即一秒内有1400个采样点,一样意思的)x=np.linspace(0,1,1400)#设置需要采样的信号,频率分量有180,390和600y=7np.sin(2np.p
- 数学中的代数数论与代数几何
AI天才研究院
计算AI大模型应用入门实战与进阶大数据人工智能语言模型AILLMJavaPython架构设计AgentRPA计算AI大模型应用
1.背景介绍在数学的众多分支中,代数数论和代数几何是两个极其重要的领域。代数数论,顾名思义,是研究数论问题的代数方法,主要研究整数、有理数、代数数等的性质。而代数几何则是研究零点集的代数方法,主要研究多项式方程和代数方程组的解的几何性质。这两个领域虽然看似独立,但实际上有着深厚的内在联系,它们的交叉研究已经产生了许多深远的理论和应用。2.核心概念与联系2.1代数数论代数数论的核心概念是代数数,即满
- 如何理解,在数学上完备的 这样的描述?
fK0pS
经验分享
如何理解,在数学上完备的这样的描述?在数学中,"完备"这一术语具有多个含义,具体取决于它应用的上下文。以下是几个常见领域中“完备”的定义和理解:完备性定理(逻辑与数学基础):在逻辑和数学基础中,特别是与形式语言和证明系统相关的领域,完备性通常指的是一个系统能够证明所有在该系统内部被认为是“真”的命题。换句话说,如果一个命题在某个逻辑系统中是真的(即,在所有模型中为真),则该系统应该能够提供一个证明
- Spring Boot在Java领域的分布式系统应用
Java技术栈实战
javaspringbootwpfai
SpringBoot在Java领域的分布式系统应用关键词:SpringBoot、分布式系统、微服务架构、服务治理、分布式配置、服务容错、Java开发摘要:本文系统解析SpringBoot在Java分布式系统中的核心应用,从基础架构到高级实践逐层展开。首先阐述分布式系统核心概念与SpringBoot的技术优势,通过CAP定理、一致性模型等理论构建技术框架;然后结合具体代码示例讲解服务注册发现、配置管
- 第九课:大白话教你朴素贝叶斯
顽强卖力
机器学习-深度学习-神经网络算法python大数据数据分析
这节课咱们来聊聊朴素贝叶斯(NaiveBayes),这个算法名字听起来像是个“天真无邪的数学小天才”,但其实它是个超级实用的分类工具!我会用最接地气的方式,从定义讲到代码实战,保证你笑着学会,还能拿去忽悠朋友!一:朴素贝叶斯是啥?——当概率论遇上“天真”假设1.1定义:贝叶斯定理的“偷懒版”问题:你想判断一封邮件是不是垃圾邮件,或者一条评论是不是好评。贝叶斯定理(原版):[P(A|B)=\frac
- Java开发中,spring mvc 的线程怎么调用?
小麦麦子
springmvc
今天逛知乎,看到最近很多人都在问spring mvc 的线程http://www.maiziedu.com/course/java/ 的启动问题,觉得挺有意思的,那哥们儿问的也听仔细,下面的回答也很详尽,分享出来,希望遇对遇到类似问题的Java开发程序猿有所帮助。
问题:
在用spring mvc架构的网站上,设一线程在虚拟机启动时运行,线程里有一全局
- maven依赖范围
bitcarter
maven
1.test 测试的时候才会依赖,编译和打包不依赖,如junit不被打包
2.compile 只有编译和打包时才会依赖
3.provided 编译和测试的时候依赖,打包不依赖,如:tomcat的一些公用jar包
4.runtime 运行时依赖,编译不依赖
5.默认compile
依赖范围compile是支持传递的,test不支持传递
1.传递的意思是项目A,引用
- Jaxb org.xml.sax.saxparseexception : premature end of file
darrenzhu
xmlprematureJAXB
如果在使用JAXB把xml文件unmarshal成vo(XSD自动生成的vo)时碰到如下错误:
org.xml.sax.saxparseexception : premature end of file
很有可能时你直接读取文件为inputstream,然后将inputstream作为构建unmarshal需要的source参数。InputSource inputSource = new In
- CSS Specificity
周凡杨
html权重Specificitycss
有时候对于页面元素设置了样式,可为什么页面的显示没有匹配上呢? because specificity
CSS 的选择符是有权重的,当不同的选择符的样式设置有冲突时,浏览器会采用权重高的选择符设置的样式。
规则:
HTML标签的权重是1
Class 的权重是10
Id 的权重是100
- java与servlet
g21121
servlet
servlet 搞java web开发的人一定不会陌生,而且大家还会时常用到它。
下面是java官方网站上对servlet的介绍: java官网对于servlet的解释 写道
Java Servlet Technology Overview Servlets are the Java platform technology of choice for extending and enha
- eclipse中安装maven插件
510888780
eclipsemaven
1.首先去官网下载 Maven:
http://www.apache.org/dyn/closer.cgi/maven/binaries/apache-maven-3.2.3-bin.tar.gz
下载完成之后将其解压,
我将解压后的文件夹:apache-maven-3.2.3,
并将它放在 D:\tools目录下,
即 maven 最终的路径是:D:\tools\apache-mave
- jpa@OneToOne关联关系
布衣凌宇
jpa
Nruser里的pruserid关联到Pruser的主键id,实现对一个表的增删改,另一个表的数据随之增删改。
Nruser实体类
//*****************************************************************
@Entity
@Table(name="nruser")
@DynamicInsert @Dynam
- 我的spring学习笔记11-Spring中关于声明式事务的配置
aijuans
spring事务配置
这两天学到事务管理这一块,结合到之前的terasoluna框架,觉得书本上讲的还是简单阿。我就把我从书本上学到的再结合实际的项目以及网上看到的一些内容,对声明式事务管理做个整理吧。我看得Spring in Action第二版中只提到了用TransactionProxyFactoryBean和<tx:advice/>,定义注释驱动这三种,我承认后两种的内容很好,很强大。但是实际的项目当中
- java 动态代理简单实现
antlove
javahandlerproxydynamicservice
dynamicproxy.service.HelloService
package dynamicproxy.service;
public interface HelloService {
public void sayHello();
}
dynamicproxy.service.impl.HelloServiceImpl
package dynamicp
- JDBC连接数据库
百合不是茶
JDBC编程JAVA操作oracle数据库
如果我们要想连接oracle公司的数据库,就要首先下载oralce公司的驱动程序,将这个驱动程序的jar包导入到我们工程中;
JDBC链接数据库的代码和固定写法;
1,加载oracle数据库的驱动;
&nb
- 单例模式中的多线程分析
bijian1013
javathread多线程java多线程
谈到单例模式,我们立马会想到饿汉式和懒汉式加载,所谓饿汉式就是在创建类时就创建好了实例,懒汉式在获取实例时才去创建实例,即延迟加载。
饿汉式:
package com.bijian.study;
public class Singleton {
private Singleton() {
}
// 注意这是private 只供内部调用
private static
- javascript读取和修改原型特别需要注意原型的读写不具有对等性
bijian1013
JavaScriptprototype
对于从原型对象继承而来的成员,其读和写具有内在的不对等性。比如有一个对象A,假设它的原型对象是B,B的原型对象是null。如果我们需要读取A对象的name属性值,那么JS会优先在A中查找,如果找到了name属性那么就返回;如果A中没有name属性,那么就到原型B中查找name,如果找到了就返回;如果原型B中也没有
- 【持久化框架MyBatis3六】MyBatis3集成第三方DataSource
bit1129
dataSource
MyBatis内置了数据源的支持,如:
<environments default="development">
<environment id="development">
<transactionManager type="JDBC" />
<data
- 我程序中用到的urldecode和base64decode,MD5
bitcarter
cMD5base64decodeurldecode
这里是base64decode和urldecode,Md5在附件中。因为我是在后台所以需要解码:
string Base64Decode(const char* Data,int DataByte,int& OutByte)
{
//解码表
const char DecodeTable[] =
{
0, 0, 0, 0, 0, 0
- 腾讯资深运维专家周小军:QQ与微信架构的惊天秘密
ronin47
社交领域一直是互联网创业的大热门,从PC到移动端,从OICQ、MSN到QQ。到了移动互联网时代,社交领域应用开始彻底爆发,直奔黄金期。腾讯在过去几年里,社交平台更是火到爆,QQ和微信坐拥几亿的粉丝,QQ空间和朋友圈各种刷屏,写心得,晒照片,秀视频,那么谁来为企鹅保驾护航呢?支撑QQ和微信海量数据背后的架构又有哪些惊天内幕呢?本期大讲堂的内容来自今年2月份ChinaUnix对腾讯社交网络运营服务中心
- java-69-旋转数组的最小元素。把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转。输入一个排好序的数组的一个旋转,输出旋转数组的最小元素
bylijinnan
java
public class MinOfShiftedArray {
/**
* Q69 旋转数组的最小元素
* 把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转。输入一个排好序的数组的一个旋转,输出旋转数组的最小元素。
* 例如数组{3, 4, 5, 1, 2}为{1, 2, 3, 4, 5}的一个旋转,该数组的最小值为1。
*/
publ
- 看博客,应该是有方向的
Cb123456
反省看博客
看博客,应该是有方向的:
我现在就复习以前的,在补补以前不会的,现在还不会的,同时完善完善项目,也看看别人的博客.
我刚突然想到的:
1.应该看计算机组成原理,数据结构,一些算法,还有关于android,java的。
2.对于我,也快大四了,看一些职业规划的,以及一些学习的经验,看看别人的工作总结的.
为什么要写
- [开源与商业]做开源项目的人生活上一定要朴素,尽量减少对官方和商业体系的依赖
comsci
开源项目
为什么这样说呢? 因为科学和技术的发展有时候需要一个平缓和长期的积累过程,但是行政和商业体系本身充满各种不稳定性和不确定性,如果你希望长期从事某个科研项目,但是却又必须依赖于某种行政和商业体系,那其中的过程必定充满各种风险。。。
所以,为避免这种不确定性风险,我
- 一个 sql优化 ([精华] 一个查询优化的分析调整全过程!很值得一看 )
cwqcwqmax9
sql
见 http://www.itpub.net/forum.php?mod=viewthread&tid=239011
Web翻页优化实例
提交时间: 2004-6-18 15:37:49 回复 发消息
环境:
Linux ve
- Hibernat and Ibatis
dashuaifu
Hibernateibatis
Hibernate VS iBATIS 简介 Hibernate 是当前最流行的O/R mapping框架,当前版本是3.05。它出身于sf.net,现在已经成为Jboss的一部分了 iBATIS 是另外一种优秀的O/R mapping框架,当前版本是2.0。目前属于apache的一个子项目了。 相对Hibernate“O/R”而言,iBATIS 是一种“Sql Mappi
- 备份MYSQL脚本
dcj3sjt126com
mysql
#!/bin/sh
# this shell to backup mysql
#
[email protected] (QQ:1413161683 DuChengJiu)
_dbDir=/var/lib/mysql/
_today=`date +%w`
_bakDir=/usr/backup/$_today
[ ! -d $_bakDir ] && mkdir -p
- iOS第三方开源库的吐槽和备忘
dcj3sjt126com
ios
转自
ibireme的博客 做iOS开发总会接触到一些第三方库,这里整理一下,做一些吐槽。 目前比较活跃的社区仍旧是Github,除此以外也有一些不错的库散落在Google Code、SourceForge等地方。由于Github社区太过主流,这里主要介绍一下Github里面流行的iOS库。 首先整理了一份
Github上排名靠
- html wlwmanifest.xml
eoems
htmlxml
所谓优化wp_head()就是把从wp_head中移除不需要元素,同时也可以加快速度。
步骤:
加入到function.php
remove_action('wp_head', 'wp_generator');
//wp-generator移除wordpress的版本号,本身blog的版本号没什么意义,但是如果让恶意玩家看到,可能会用官网公布的漏洞攻击blog
remov
- 浅谈Java定时器发展
hacksin
java并发timer定时器
java在jdk1.3中推出了定时器类Timer,而后在jdk1.5后由Dou Lea从新开发出了支持多线程的ScheduleThreadPoolExecutor,从后者的表现来看,可以考虑完全替代Timer了。
Timer与ScheduleThreadPoolExecutor对比:
1.
Timer始于jdk1.3,其原理是利用一个TimerTask数组当作队列
- 移动端页面侧边导航滑入效果
ini
jqueryWebhtml5cssjavascirpt
效果体验:http://hovertree.com/texiao/mobile/2.htm可以使用移动设备浏览器查看效果。效果使用到jquery-2.1.4.min.js,该版本的jQuery库是用于支持HTML5的浏览器上,不再兼容IE8以前的浏览器,现在移动端浏览器一般都支持HTML5,所以使用该jQuery没问题。HTML文件代码:
<!DOCTYPE html>
<h
- AspectJ+Javasist记录日志
kane_xie
aspectjjavasist
在项目中碰到这样一个需求,对一个服务类的每一个方法,在方法开始和结束的时候分别记录一条日志,内容包括方法名,参数名+参数值以及方法执行的时间。
@Override
public String get(String key) {
// long start = System.currentTimeMillis();
// System.out.println("Be
- redis学习笔记
MJC410621
redisNoSQL
1)nosql数据库主要由以下特点:非关系型的、分布式的、开源的、水平可扩展的。
1,处理超大量的数据
2,运行在便宜的PC服务器集群上,
3,击碎了性能瓶颈。
1)对数据高并发读写。
2)对海量数据的高效率存储和访问。
3)对数据的高扩展性和高可用性。
redis支持的类型:
Sring 类型
set name lijie
get name lijie
set na
- 使用redis实现分布式锁
qifeifei
在多节点的系统中,如何实现分布式锁机制,其中用redis来实现是很好的方法之一,我们先来看一下jedis包中,有个类名BinaryJedis,它有个方法如下:
public Long setnx(final byte[] key, final byte[] value) {
checkIsInMulti();
client.setnx(key, value);
ret
- BI并非万能,中层业务管理报表要另辟蹊径
张老师的菜
大数据BI商业智能信息化
BI是商业智能的缩写,是可以帮助企业做出明智的业务经营决策的工具,其数据来源于各个业务系统,如ERP、CRM、SCM、进销存、HER、OA等。
BI系统不同于传统的管理信息系统,他号称是一个整体应用的解决方案,是融入管理思想的强大系统:有着系统整体的设计思想,支持对所有
- 安装rvm后出现rvm not a function 或者ruby -v后提示没安装ruby的问题
wudixiaotie
function
1.在~/.bashrc最后加入
[[ -s "$HOME/.rvm/scripts/rvm" ]] && source "$HOME/.rvm/scripts/rvm"
2.重新启动terminal输入:
rvm use ruby-2.2.1 --default
把当前安装的ruby版本设为默