题目链接
参考博客
题意:给定两个相离的圆和圆外定点 P P P,求过点 P P P且与已知的两个圆外切的所有圆。
思路:
圆的反演变换入门题。
掌握两个关于圆反演的性质即可解决该问题。
一是相切两圆的反相仍相切,若反相均为直线,则平行。
二是经过反演中心的圆,其反相为直线。
故我们可以以P为反演中心,任意值为反演半径。先求出两个已知圆的反演圆,则与两个反演圆外切的直线,其反演后一定满足:
(1).与两个圆的原形相切。
(2).一定通过反演中心P点。
因题目是求外切,故注意一下反演圆圆心和P点应在切线同一侧,这样就能保证切线反演以后是与原形外切的圆。
代码:
#include
#include
#include
#include
#include
using namespace std;
typedef long long ll;
const double eps = 1e-10;
class Point{
public:
double x,y;
Point(double _x=0,double _y=0):x(_x),y(_y){}
Point operator + (Point rhs){return Point(x+rhs.x,y+rhs.y);}
Point operator - (Point rhs){return Point(x-rhs.x,y-rhs.y);}
Point operator * (double rhs){return Point(x*rhs,y*rhs);}
Point operator / (double rhs){return Point(x/rhs,y/rhs);}
Point Move(double a,double d){return Point(x+d*cos(a),y+d*sin(a));}
void Read(){scanf("%lf%lf",&x,&y);}
}P;
class Circle{
public:
Point o;double r;
Circle(double _x=0,double _y=0,double _r=0):o(_x,_y),r(_r){}
void Read(){o.Read();scanf("%lf",&r);}
void out(){printf("%.8f %.8f %.8f\n",o.x,o.y,r);}
}c[5];
int Sign(double x){return (x>eps) - (x<-eps);}
double Cross(Point a,Point b,Point c){return (b.x-a.x)*(c.y-a.y) - (c.x-a.x)*(b.y-a.y);}
double Dis(Point a,Point b){return sqrt((a.x-b.x)*(a.x-b.x) + (a.y-b.y)*(a.y-b.y));}
double R;
int tot;
Circle Inverse(Circle a){
Circle res;
double oc1 = Dis(P,a.o);
double k1 = 1.0 / (oc1 - a.r);
double k2 = 1.0 / (oc1 + a.r);
res.r = 0.5*(k1 - k2)*R*R;
double oc2 = 0.5*(k1 + k2)*R*R;
res.o =P + (a.o - P)*oc2 / oc1;
return res;
}
void Mark(Point a,Point b){
++tot;
double tem = fabs(Cross(a,P,b)/Dis(a,b))*2.0;
c[tot].r = R*R/tem;
double d = Dis(a,c[0].o);
c[tot].o = P + (a-c[0].o)*(c[tot].r/d);
}
void solve(){
for(int i=0 ;i<2 ;i++) c[i] = Inverse(c[i]);
if(c[0].r < c[1].r) swap(c[0],c[1]);
Point tem = c[1].o - c[0].o;
double a1 = atan2(tem.y,tem.x);
double a2 = acos((c[0].r - c[1].r)/Dis(c[0].o,c[1].o));
Point P1 = c[0].o.Move(a1+a2,c[0].r);
Point P2 = c[1].o.Move(a1+a2,c[1].r);
if(Sign(Cross(P1,c[0].o,P2)) == Sign(Cross(P1,P,P2))) Mark(P1,P2);
P1 = c[0].o.Move(a1-a2,c[0].r);
P2 = c[1].o.Move(a1-a2,c[1].r);
if(Sign(Cross(P1,c[0].o,P2)) == Sign(Cross(P1,P,P2))) Mark(P1,P2);
}
int main(){
R = 5.0; //保证精度的前提下任意取的反演半径
int T;scanf("%d",&T);
while(T--){
tot = 1;
for(int i=0 ;i<2 ;i++) c[i].Read();
P.Read();
solve();
printf("%d\n",tot-1);
for(int i=2 ;i<=tot ;i++) c[i].out();
}
return 0;
}