P1064 金明的预算方案(动态规划)

题目描述

金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间。更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过 NNN 元钱就行”。今天一早,金明就开始做预算了,他把想买的物品分为两类:主件与附件,附件是从属于某个主件的,下表就是一些主件与附件的例子:

主件 附件

电脑 打印机,扫描仪

书柜 图书

书桌 台灯,文具

工作椅 无

如果要买归类为附件的物品,必须先买该附件所属的主件。每个主件可以有 000 个、 111 个或 222 个附件。附件不再有从属于自己的附件。金明想买的东西很多,肯定会超过妈妈限定的 NNN 元。于是,他把每件物品规定了一个重要度,分为 555 等:用整数 1−51-51−5 表示,第 555 等最重要。他还从因特网上查到了每件物品的价格(都是 101010 元的整数倍)。他希望在不超过 NNN 元(可以等于 NNN 元)的前提下,使每件物品的价格与重要度的乘积的总和最大。

设第 jjj 件物品的价格为 v[j]v_[j]v[​j] ,重要度为 w[j]w_[j]w[​j] ,共选中了 kkk 件物品,编号依次为 j1,j2,…,jkj_1,j_2,…,j_kj1​,j2​,…,jk​ ,则所求的总和为:

v[j1]×w[j1]+v[j2]×w[j2]+…+v[jk]×w[jk]v_[j_1] \times w_[j_1]+v_[j_2] \times w_[j_2]+ …+v_[j_k] \times w_[j_k]v[​j1​]×w[​j1​]+v[​j2​]×w[​j2​]+…+v[​jk​]×w[​jk​] 。

请你帮助金明设计一个满足要求的购物单。

输入输出格式

输入格式:

 

第 111 行,为两个正整数,用一个空格隔开:

NmN mNm (其中 N(<32000)N(<32000)N(<32000) 表示总钱数, m(<60)m(<60)m(<60) 为希望购买物品的个数。) 从第 222 行到第 m+1m+1m+1 行,第 jjj 行给出了编号为 j−1j-1j−1 的物品的基本数据,每行有 333 个非负整数

vpqv p qvpq (其中 vvv 表示该物品的价格( v<10000v<10000v<10000 ),p表示该物品的重要度( 1−51-51−5 ), qqq 表示该物品是主件还是附件。如果 q=0q=0q=0 ,表示该物品为主件,如果 q>0q>0q>0 ,表示该物品为附件, qqq 是所属主件的编号)

 

输出格式:

 

一个正整数,为不超过总钱数的物品的价格与重要度乘积的总和的最大值( <200000<200000<200000 )。

 

输入输出样例

输入样例#1: 复制

1000 5
800 2 0
400 5 1
300 5 1
400 3 0
500 2 0

输出样例#1: 复制

2200

分析:本题为一个比较好且有一定难度的01背包问题。

本题有4种取法:
1.不买
2.只买主件
3.主件和一个附件
4.主件和两个附件。

注意本题不是所有的主件都拥有附件,但我们完全可以假设每个主件都拥有附件,那些实际没有的即值为0;

状态转移方程:
 

1》dp[j] = max(dp[j], dp[j - w[i][0]] + v[i][0]);
(j >= w[i][0])     
2》dp[j] = max(dp[j], dp[j - w[i][0] - w[i][1]] + v[i][0] + v[i][1]);
(j >= w[i][0] + w[i][1])

3》dp[j] = max(dp[j], dp[j - w[i][0] - w[i][1]-w[i][2]] + v[i][0] + v[i][1]+v[i][2]);
(j >= w[i][0] + w[i][1] + w[i][2])
4》dp[j] = max(dp[j], dp[j - w[i][0] - w[i][1]] + v[i][0] + v[i][1]);
(j >= w[i][0] + w[i][1])
5》dp[j] = max(dp[j], dp[j - w[i][0] - w[i][1]-w[i][2]] + v[i][0] + v[i][1]+v[i][2]);
(  j >= w[i][0] + w[i][1] + w[i][2])

代码:

#include
#include
#include
#include
using namespace std;
const int maxn = 32010;
int dp[maxn] = { 0 };
int w[maxn][3] = { 0 }, v[maxn][3] = { 0 };
int f[maxn] = { 0 };
int N, M;
/*状态转移
1.不买
2.只买主件
3.主件和一个附件
4.主件和两个附件。
*/


int main()
{
	scanf("%d%d", &N, &M);
	for (int i = 1; i <= M; ++i)
	{
		int a, b, c;
		//cin >> a >> b >> c;
		scanf("%d%d%d", &a, &b, &c);
		if (c)
		{
			f[c]++;
			w[c][f[c]] = a;
			v[c][f[c]] = a * b;

		}
		else {
			w[i][0] = a;
			v[i][0] = a * b;

		}

	}
	for (int i = 1; i <= M; ++i)
	{
		for (int j = N;w[i][0]!=0&&j >= w[i][0]; --j)
		{
			dp[j] = max(dp[j], dp[j - w[i][0]] + v[i][0]);
			if (j >= w[i][0] + w[i][1])
			{
				dp[j] = max(dp[j], dp[j - w[i][0] - w[i][1]] + v[i][0] + v[i][1]);
			}
			if (j >= w[i][0] + w[i][1] + w[i][2])
			{
				dp[j] = max(dp[j], dp[j - w[i][0] - w[i][1]-w[i][2]] + v[i][0] + v[i][1]+v[i][2]);
			}
		}
	}
	//cout << dp[N] << endl;
	printf("%d\n", dp[N]);
	return 0;
}

注意背包大小要以价值(那个大的)开

你可能感兴趣的:(P1064 金明的预算方案(动态规划))