金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间。更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过 NN 元钱就行”。今天一早,金明就开始做预算了,他把想买的物品分为两类:主件与附件,附件是从属于某个主件的,下表就是一些主件与附件的例子:
主件 附件
电脑 打印机,扫描仪
书柜 图书
书桌 台灯,文具
工作椅 无
如果要买归类为附件的物品,必须先买该附件所属的主件。每个主件可以有 00 个、 11 个或 22 个附件。附件不再有从属于自己的附件。金明想买的东西很多,肯定会超过妈妈限定的 NN 元。于是,他把每件物品规定了一个重要度,分为 55 等:用整数 1-51−5 表示,第 55 等最重要。他还从因特网上查到了每件物品的价格(都是 1010 元的整数倍)。他希望在不超过 NN元(可以等于 NN 元)的前提下,使每件物品的价格与重要度的乘积的总和最大。
设第 jj 件物品的价格为 v_[j]v[j] ,重要度为 w_[j]w[j] ,共选中了 kk 件物品,编号依次为 j_1,j_2,…,j_kj1,j2,…,jk ,则所求的总和为:
v_[j_1] \times w_[j_1]+v_[j_2] \times w_[j_2]+ …+v_[j_k] \times w_[j_k]v[j1]×w[j1]+v[j2]×w[j2]+…+v[jk]×w[jk] 。
请你帮助金明设计一个满足要求的购物单。
第 11 行,为两个正整数,用一个空格隔开:
N mNm (其中 N(<32000)N(<32000) 表示总钱数, m(<60)m(<60) 为希望购买物品的个数。) 从第 22 行到第 m+1m+1 行,第 jj 行给出了编号为 j-1j−1 的物品的基本数据,每行有 33 个非负整数
v p qvpq (其中 vv 表示该物品的价格( v<10000v<10000 ),p表示该物品的重要度( 1-51−5 ), qq 表示该物品是主件还是附件。如果 q=0q=0 ,表示该物品为主件,如果 q>0q>0 ,表示该物品为附件, qq 是所属主件的编号)
输出格式:一个正整数,为不超过总钱数的物品的价格与重要度乘积的总和的最大值( <200000<200000 )。
1000 5 800 2 0 400 5 1 300 5 1 400 3 0 500 2 0
2200
这道题以前也是做过的,思路还记得。当时是把这道题做成了一道普通01,就没考虑附件选择时可能出现的复杂情况。那么基本思路还是对于四种情况,选主件,主件和一号附件,主件和二号附件,主件和所有附件分别进行01背包DP,需要注意四种情况时的条件,还有就是交题前要看数组大小,不然就像我本来是打对了的但没得满分。
#include
#include
#include
#include
#include
#include
#include
#include
#include