- 前端工程化实践 - 代码规范 & 提交规范 & 构建流程 & Monorepo(附 React Native 案例)
绿胡子大叔
前端reactnative代码规范gityarn
前端工程化实践-代码规范&提交规范&构建流程&Monorepo前言仓库策略Multirepo什么是Multirepo?Multirepo的优点Multirepo的缺点Monorepo什么是Monorepo?Monorepo的优点Monorepo的缺点和限制依赖管理Yarnworkspace-高效管理工作区依赖简介如何使用所有依赖都需要提升到根仓库吗?基础命令Lerna-简化多包管理过程Lerna是
- Java 大视界 -- Java 与 Spark SQL:结构化数据处理与查询优化(五)
青云交
大数据新视界Java大视界SparkSQL结构化数据查询优化数据分区缓存策略日志分析电商数据分析java
亲爱的朋友们,热烈欢迎你们来到青云交的博客!能与你们在此邂逅,我满心欢喜,深感无比荣幸。在这个瞬息万变的时代,我们每个人都在苦苦追寻一处能让心灵安然栖息的港湾。而我的博客,正是这样一个温暖美好的所在。在这里,你们不仅能够收获既富有趣味又极为实用的内容知识,还可以毫无拘束地畅所欲言,尽情分享自己独特的见解。我真诚地期待着你们的到来,愿我们能在这片小小的天地里共同成长,共同进步。本博客的精华专栏:大数
- Hive 整合 Spark 全教程 (Hive on Spark)
字节全栈_rJF
hivesparkhadoop
hadoop.proxyuser.luanhao.groups*hadoop.proxyuser.luanhao.groups*2)HDFS配置文件配置hdfs-site.xmldfs.namenode.http-addressBigdata00:9870dfs.namenode.secondary.http-addressBigdata00:9868dfs.replication13)YARN配
- 如何使用Spark Streaming
会探索的小学生
spark大数据分布式
一、什么叫SparkStreaming基于SparkCore,大规模、高吞吐量、容错的实时数据流的处理二、SparkStreaming依赖org.apache.sparkspark-streaming_2.112.1.2三、什么叫DStreamDStream:DiscretizedStream离散流,这是SparkStreaming对内部持续的实时数据流的抽象描述,即我们处理的一个实时数据流,在S
- Spark 任务与 Spark Streaming 任务的差异详解
goTsHgo
spark-streaming分布式大数据sparkstreaming大数据分布式
Spark任务与SparkStreaming任务的主要差异源自于两者的应用场景不同:Spark主要处理静态的大数据集,而SparkStreaming处理的是实时流数据。这些差异体现在任务的调度、执行、容错、数据处理模式等方面。接下来,我们将从底层原理和源代码的角度详细解析Spark任务和SparkStreaming任务的差别。1.任务调度模型差异1.1Spark任务的调度模型Spark的任务调度基
- 4 Spark Streaming
TTXS123456789ABC
#Sparksparkajax大数据
4SparkStreaming一级目录1.整体流程2.数据抽象3.DStream相关操作4.SparkStreaming完成实时需求1)WordCount2)updateStateByKey3)reduceByKeyAndWindow一级目录SparkStreaming是一个基于SparkCore之上的实时计算框架,可以从很多数据源消费数据并对数据进行实时的处理,具有高吞吐量和容错能力强等特点。S
- spark和python的区别_Spark入门(Python)
weixin_39934257
spark和python的区别
Spark是第一个脱胎于该转变的快速、通用分布式计算范式,并且很快流行起来。Spark使用函数式编程范式扩展了MapReduce模型以支持更多计算类型,可以涵盖广泛的工作流,这些工作流之前被实现为Hadoop之上的特殊系统。Spark使用内存缓存来提升性能,因此进行交互式分析也足够快速(就如同使用Python解释器,与集群进行交互一样)。缓存同时提升了迭代算法的性能,这使得Spark非常适合数据理
- spark python入门_python pyspark入门篇
weixin_39686634
sparkpython入门
一.环境介绍:1.安装jdk7以上2.python2.7.113.IDEpycharm4.package:spark-1.6.0-bin-hadoop2.6.tar.gz二.Setup1.解压spark-1.6.0-bin-hadoop2.6.tar.gz到目录D:\spark-1.6.0-bin-hadoop2.62.配置环境变量Path,添加D:\spark-1.6.0-bin-hadoop2
- spark streaming python_Spark入门:Spark Streaming简介(Python版)
weixin_39531582
sparkstreamingpython
SparkStreaming是构建在Spark上的实时计算框架,它扩展了Spark处理大规模流式数据的能力。SparkStreaming可结合批处理和交互查询,适合一些需要对历史数据和实时数据进行结合分析的应用场景。SparkStreaming设计SparkStreaming是Spark的核心组件之一,为Spark提供了可拓展、高吞吐、容错的流计算能力。如下图所示,SparkStreaming可整
- Spark 学习-1 (python)
一二三四0123
spark学习python
Spark官方文档快速入门指南Spark架构-Spark教程1.基本概念RDD(resilientdistributeddataset)弹性分布式数据集,对分布式数据和计算的基本抽象。每个Spark应用由一个驱动器程序(driverprogram)发起集群上的并行操作,驱动器程序一般要管理多个执行器(executor)节点。当我们在集群上执行一个操作,不同的节点会对文件不同部分展开计算。驱动器程序
- Python大数据之PySpark(三)使用Python语言开发Spark程序代码_windows spark python
2401_84181704
程序员大数据pythonspark
算子:rdd的api的操作,就是算子,flatMap扁平化算子,map转换算子Transformation算子Action算子步骤:1-首先创建SparkContext上下文环境2-从外部文件数据源读取数据3-执行flatmap执行扁平化操作4-执行map转化操作,得到(word,1)5-reduceByKey将相同Key的Value数据累加操作6-将结果输出到文件系统或打印代码:#-*-codi
- Spark入门(Python)
nfenghklibra
pythonspark
目录一、安装Spark二、Spark基本操作一、安装Sparkpip3installpyspark二、Spark基本操作#导入spark的SparkContext,SparkConf模块frompysparkimportSparkContext,SparkConf#导入os模块importos#设置PYSPARK的python环境os.environ['PYSPARK_PYTHON']="C:\\
- Flink整合Hudi及使用
我的K8409
Flinkflink服务器linux
1、jar包上传上传jar包即可完成整合#1、将hudi-flink1.15-bundle-0.15.0.jar包上传到flink的lib目录下/usr/local/soft/flink-1.15.3/lib--如果没有启动集群,直接忽略#2、重启flink的集群yarnapplication-listyarnapplication-killapplication_1706339492248_00
- Hadoop HA 架构
weixin_30569033
shell大数据
为什么要用集群?企业里面,多台机器伪分布式每一个角色都是一个进程HDFS:NNSNNDNYARN:RMNM大数据所有组件,都是主从架构master-slaveHDFS读写请求都是先到NN节点,但是,HBase读写请求不是经过master,建表和删除表是需要经过masterNN节点挂了,就不能提供对外服务(-put,-get)需要配置两个NN节点(实时的,任何时刻只有一台active对外,另外一台是
- hive表指定分区字段搜索_Hive学习-Hive基本操作(建库、建表、分区表、写数据)...
weixin_39710660
hive表指定分区字段搜索
hive简单认识Hive是建立在HDFS之上的数据仓库,所以Hive的数据全部存储在HDFS上。Hive的数据分为两部分,一部分是存在HDFS上的具体数据,一部分是描述这些具体数据的元数据信息,一般Hive的元数据存在MySQL上。Hive是类SQL语法的数据查询、计算、分析工具,执行引擎默认的是MapReduce,可以设置为Spark、Tez。Hive分内部表和外部表,外部表在建表的同时指定一个
- PyDeequ库在AWS EMR启动集群中数据质量检查功能的配置方法和实现代码
weixin_30777913
pythonspark大数据云计算aws
PyDeequ是一个基于ApacheSpark的PythonAPI,专门用于定义和执行“数据单元测试”,从而在大规模数据集中测量数据质量。PyDeequ框架在PySpark代码中提供了全面的数据质量检查功能,能够帮助用户&有效地监控和提升大规模数据集的数据质量。它在PySpark代码中的数据质量检查功能主要包括以下几个方面:核心组件指标计算(MetricsComputation):利用分析器(An
- Erpnext安装
人间不值得T皿T
开源项目pythonerp开源项目javascript
Erpnext安装环境要求Ubuntu23.04x86_64Python3.10.12pip23.0.1nodev18.16.0npm9.5.1yarn1.22.22MariaDB10.11.2Redis7.0.8wkhtmltox0.12.6.1bench5.22.6环境安装Reids安装//安装7.0.8也可不指定版本直接执行sudoaptinstallredis-serversudoapti
- spark 算子例子_Spark性能调优方法
不让爱你的人失望
spark算子例子
公众号后台回复关键词:pyspark,获取本项目github地址。Spark程序可以快如闪电⚡️,也可以慢如蜗牛?。它的性能取决于用户使用它的方式。一般来说,如果有可能,用户应当尽可能多地使用SparkSQL以取得更好的性能。主要原因是SparkSQL是一种声明式编程风格,背后的计算引擎会自动做大量的性能优化工作。基于RDD的Spark的性能调优属于坑非常深的领域,并且很容易踩到。我们将介绍Spa
- Spark性能调优
大数据侠客
spark相关问题汇总及解决spark性能调优
1、前言在大数据计算领域,Spark已经成为了越来越流行、越来越受欢迎的计算平台之一。Spark的功能涵盖了大数据领域的离线批处理、SQL类处理、流式/实时计算、机器学习、图计算等各种不同类型的计算操作,应用范围与前景非常广泛。在美团•大众点评,已经有很多同学在各种项目中尝试使用Spark。大多数同学(包括笔者在内),最初开始尝试使用Spark的原因很简单,主要就是为了让大数据计算作业的执行速度更
- 在AWS上使用KMS客户端密钥加密S3文件,同时支持PySpark读写和Snowflake导入
weixin_30777913
pythonspark大数据云计算数据仓库
现有AWSEMR集群上运行PySpark代码,可以读写S3上的数据文件,Snowflake数据仓库也需要导入S3上的文件到表。现在要用AWSKMS有客户端密钥加密S3上的文件,同时允许PySpark代码,可以读写S3上的数据文件,Snowflake数据仓库导入S3上的文件到表。为了实现AWSEMR上的PySpark读写KMS加密的S3文件,并让Snowflake导入这些文件,请按照以下步骤操作:一
- 11 Spark面试真题
TTXS123456789ABC
#Sparkspark面试大数据
11Spark大厂面试真题1.通常来说,Spark与MapReduce相比,Spark运行效率更高。请说明效率更高来源于Spark内置的哪些机制?2.hadoop和spark使用场景?3.spark如何保证宕机迅速恢复?4.hadoop和spark的相同点和不同点?5.RDD持久化原理?6.checkpoint检查点机制?7.checkpoint和持久化机制的区别?8.RDD机制理解吗?9.Spa
- OLAP引擎比较
小手追梦
hadooprpcjava
一,sparksql与dorisspark虽然是一个计算引擎,但sparksql也支持符合通用语法的sql查询,延迟为分钟级。doris是一个OLAP数据库,支持对大数据的复杂查询,延迟为秒级。doris比sparksql快,主要原因在于针对场景不同导致的架构不同。sparksql启动一个查询,需要进行资源调度、任务调度、任务分发,耗时更久。doris是常驻进程,启动一个doris查询后,快速的对
- 大数据毕业设计hadoop+spark+hive豆瓣图书数据分析可视化大屏 豆瓣图书爬虫 图书推荐系统
qq_79856539
javawebjava大数据hadoop课程设计
系统总体目标基于Spark的个性化书籍推荐系统是一种基于大数据技术的智能推荐系统,它可以根据用户的历史行为和偏好,为用户提供个性化的书籍推荐。该系统采用Spark技术,可以实现大数据的实时处理,从而提高推荐系统的准确性和可靠性。此外,该系统还可以根据用户的习惯和偏好,提供更加个性化的书籍推荐,从而满足用户的需求。系统的使用者包含普通用户和管理员两类,普通用户是系统的主要服务对象,主流人群是经常查看
- 【spark床头书系列】Spark Streaming 编程权威使用指南
BigDataMLApplication
spark大数据流数据处理#大数据spark大数据分布式
SparkStreaming编程权威使用指南文章目录SparkStreaming编程权威使用指南概述快速示例基本概念链接初始化StreamingContext离散化流(DStreams)输入DStreams和Receivers基本源文件流基于自定义接收器的流作为流的RDD队列高级源自定义源接收器的可靠性在DStreams上的转换操作updateStateByKey操作transform操作窗口操作
- Spark Streaming的背压机制的原理与实现代码及分析
weixin_30777913
spark大数据python
SparkStreaming的背压机制是一种根据JobScheduler反馈的作业执行信息来动态调整Receiver数据接收率的机制。在Spark1.5.0及以上版本中,可以通过设置spark.streaming.backpressure.enabled为true来启用背压机制。当启用背压机制时,SparkStreaming会自动根据系统的处理能力来调整数据的输入速率,从而在流量高峰时保证最大的吞
- React使用less语法
世间万物皆对象
reactnpmwebpackreact.jsless前端
1.安装yarnaddlessless-loaderornpmilessless-loader2.打开webpack配置文件创建项目的时候我们是看不到webpack文件的需要暴露出来yarnejectornpmruneject3.配置less语法环境在config文件下找到webpack.config.js文件打开webpack.config.js找到如下图:在下面添加如下两句代码:constle
- TypeScript 学习 - 创建一个项目
草明
TypeScripttypescript学习javascript
创建一个项目实际使用中,使用yarncreatereact-app比npxcreate-react-app更顺利一些.使用yarncreatereact-appts-react-app--templatetypescript创建一个TypeScript项目使用yarncreatereact-appts-react-app创建一个JavaScript项目如果不使用脚手架创建,可以安装依赖,以及编写入
- 1-structedStreaming-基本流程(2.3.1)
github_28583061
javaspark大数据mysqlhadoop
基本流程--spark2.3.1新定义接口--中间使用了一些过度接口为了兼容老版本如:BaseStreamingSourceDataSource为一个类,定义了可插拔的数据源,对应一些列旧的数据源DataSourceV2spark2.3.1新接口,只是一个接口,没有任何方法,需要配合ReadSupport或者WriteSupport接口等一起MicroBatchReadSupport--实现创建M
- 1-structedStreaming-基本流程(2.2.1)
github_28583061
javaspark大数据hadoophive
基本流程spark2.2.1StructuredNetworkWordCount统计来自socket的wordcount创建stream,指定数据源DataStreamReader--从外部存储加载流数据的接口lines=spark.readStream.format("socket").option("host",host).option("port",port).load()加载数据流为Dat
- python 分布式集群_Python搭建Spark分布式集群环境
小国阁下
python分布式集群
前言ApacheSpark是一个新兴的大数据处理通用引擎,提供了分布式的内存抽象。Spark最大的特点就是快,可比HadoopMapReduce的处理速度快100倍。本文没有使用一台电脑上构建多个虚拟机的方法来模拟集群,而是使用三台电脑来搭建一个小型分布式集群环境安装。本教程采用Spark2.0以上版本(比如Spark2.0.2、Spark2.1.0等)搭建集群,同样适用于搭建Spark1.6.2
- apache 安装linux windows
墙头上一根草
apacheinuxwindows
linux安装Apache 有两种方式一种是手动安装通过二进制的文件进行安装,另外一种就是通过yum 安装,此中安装方式,需要物理机联网。以下分别介绍两种的安装方式
通过二进制文件安装Apache需要的软件有apr,apr-util,pcre
1,安装 apr 下载地址:htt
- fill_parent、wrap_content和match_parent的区别
Cb123456
match_parentfill_parent
fill_parent、wrap_content和match_parent的区别:
1)fill_parent
设置一个构件的布局为fill_parent将强制性地使构件扩展,以填充布局单元内尽可能多的空间。这跟Windows控件的dockstyle属性大体一致。设置一个顶部布局或控件为fill_parent将强制性让它布满整个屏幕。
2) wrap_conte
- 网页自适应设计
天子之骄
htmlcss响应式设计页面自适应
网页自适应设计
网页对浏览器窗口的自适应支持变得越来越重要了。自适应响应设计更是异常火爆。再加上移动端的崛起,更是如日中天。以前为了适应不同屏幕分布率和浏览器窗口的扩大和缩小,需要设计几套css样式,用js脚本判断窗口大小,选择加载。结构臃肿,加载负担较大。现笔者经过一定时间的学习,有所心得,故分享于此,加强交流,共同进步。同时希望对大家有所
- [sql server] 分组取最大最小常用sql
一炮送你回车库
SQL Server
--分组取最大最小常用sql--测试环境if OBJECT_ID('tb') is not null drop table tb;gocreate table tb( col1 int, col2 int, Fcount int)insert into tbselect 11,20,1 union allselect 11,22,1 union allselect 1
- ImageIO写图片输出到硬盘
3213213333332132
javaimage
package awt;
import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imagei
- 自己的String动态数组
宝剑锋梅花香
java动态数组数组
数组还是好说,学过一两门编程语言的就知道,需要注意的是数组声明时需要把大小给它定下来,比如声明一个字符串类型的数组:String str[]=new String[10]; 但是问题就来了,每次都是大小确定的数组,我需要数组大小不固定随时变化怎么办呢? 动态数组就这样应运而生,龙哥给我们讲的是自己用代码写动态数组,并非用的ArrayList 看看字符
- pinyin4j工具类
darkranger
.net
pinyin4j工具类Java工具类 2010-04-24 00:47:00 阅读69 评论0 字号:大中小
引入pinyin4j-2.5.0.jar包:
pinyin4j是一个功能强悍的汉语拼音工具包,主要是从汉语获取各种格式和需求的拼音,功能强悍,下面看看如何使用pinyin4j。
本人以前用AscII编码提取工具,效果不理想,现在用pinyin4j简单实现了一个。功能还不是很完美,
- StarUML学习笔记----基本概念
aijuans
UML建模
介绍StarUML的基本概念,这些都是有效运用StarUML?所需要的。包括对模型、视图、图、项目、单元、方法、框架、模型块及其差异以及UML轮廓。
模型、视与图(Model, View and Diagram)
&
- Activiti最终总结
avords
Activiti id 工作流
1、流程定义ID:ProcessDefinitionId,当定义一个流程就会产生。
2、流程实例ID:ProcessInstanceId,当开始一个具体的流程时就会产生,也就是不同的流程实例ID可能有相同的流程定义ID。
3、TaskId,每一个userTask都会有一个Id这个是存在于流程实例上的。
4、TaskDefinitionKey和(ActivityImpl activityId
- 从省市区多重级联想到的,react和jquery的差别
bee1314
jqueryUIreact
在我们的前端项目里经常会用到级联的select,比如省市区这样。通常这种级联大多是动态的。比如先加载了省,点击省加载市,点击市加载区。然后数据通常ajax返回。如果没有数据则说明到了叶子节点。 针对这种场景,如果我们使用jquery来实现,要考虑很多的问题,数据部分,以及大量的dom操作。比如这个页面上显示了某个区,这时候我切换省,要把市重新初始化数据,然后区域的部分要从页面
- Eclipse快捷键大全
bijian1013
javaeclipse快捷键
Ctrl+1 快速修复(最经典的快捷键,就不用多说了)Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加)Ctrl+Alt+↑ 复制当前行到上一行(复制增加)Alt+↓ 当前行和下面一行交互位置(特别实用,可以省去先剪切,再粘贴了)Alt+↑ 当前行和上面一行交互位置(同上)Alt+← 前一个编辑的页面Alt+→ 下一个编辑的页面(当然是针对上面那条来说了)Alt+En
- js 笔记 函数
征客丶
JavaScript
一、函数的使用
1.1、定义函数变量
var vName = funcation(params){
}
1.2、函数的调用
函数变量的调用: vName(params);
函数定义时自发调用:(function(params){})(params);
1.3、函数中变量赋值
var a = 'a';
var ff
- 【Scala四】分析Spark源代码总结的Scala语法二
bit1129
scala
1. Some操作
在下面的代码中,使用了Some操作:if (self.partitioner == Some(partitioner)),那么Some(partitioner)表示什么含义?首先partitioner是方法combineByKey传入的变量,
Some的文档说明:
/** Class `Some[A]` represents existin
- java 匿名内部类
BlueSkator
java匿名内部类
组合优先于继承
Java的匿名类,就是提供了一个快捷方便的手段,令继承关系可以方便地变成组合关系
继承只有一个时候才能用,当你要求子类的实例可以替代父类实例的位置时才可以用继承。
在Java中内部类主要分为成员内部类、局部内部类、匿名内部类、静态内部类。
内部类不是很好理解,但说白了其实也就是一个类中还包含着另外一个类如同一个人是由大脑、肢体、器官等身体结果组成,而内部类相
- 盗版win装在MAC有害发热,苹果的东西不值得买,win应该不用
ljy325
游戏applewindowsXPOS
Mac mini 型号: MC270CH-A RMB:5,688
Apple 对windows的产品支持不好,有以下问题:
1.装完了xp,发现机身很热虽然没有运行任何程序!貌似显卡跑游戏发热一样,按照那样的发热量,那部机子损耗很大,使用寿命受到严重的影响!
2.反观安装了Mac os的展示机,发热量很小,运行了1天温度也没有那么高
&nbs
- 读《研磨设计模式》-代码笔记-生成器模式-Builder
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 生成器模式的意图在于将一个复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示(GoF)
* 个人理解:
* 构建一个复杂的对象,对于创建者(Builder)来说,一是要有数据来源(rawData),二是要返回构
- JIRA与SVN插件安装
chenyu19891124
SVNjira
JIRA安装好后提交代码并要显示在JIRA上,这得需要用SVN的插件才能看见开发人员提交的代码。
1.下载svn与jira插件安装包,解压后在安装包(atlassian-jira-subversion-plugin-0.10.1)
2.解压出来的包里下的lib文件夹下的jar拷贝到(C:\Program Files\Atlassian\JIRA 4.3.4\atlassian-jira\WEB
- 常用数学思想方法
comsci
工作
对于搞工程和技术的朋友来讲,在工作中常常遇到一些实际问题,而采用常规的思维方式无法很好的解决这些问题,那么这个时候我们就需要用数学语言和数学工具,而使用数学工具的前提却是用数学思想的方法来描述问题。。下面转帖几种常用的数学思想方法,仅供学习和参考
函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法
- pl/sql集合类型
daizj
oracle集合typepl/sql
--集合类型
/*
单行单列的数据,使用标量变量
单行多列数据,使用记录
单列多行数据,使用集合(。。。)
*集合:类似于数组也就是。pl/sql集合类型包括索引表(pl/sql table)、嵌套表(Nested Table)、变长数组(VARRAY)等
*/
/*
--集合方法
&n
- [Ofbiz]ofbiz初用
dinguangx
电商ofbiz
从github下载最新的ofbiz(截止2015-7-13),从源码进行ofbiz的试用
1. 加载测试库
ofbiz内置derby,通过下面的命令初始化测试库
./ant load-demo (与load-seed有一些区别)
2. 启动内置tomcat
./ant start
或
./startofbiz.sh
或
java -jar ofbiz.jar
&
- 结构体中最后一个元素是长度为0的数组
dcj3sjt126com
cgcc
在Linux源代码中,有很多的结构体最后都定义了一个元素个数为0个的数组,如/usr/include/linux/if_pppox.h中有这样一个结构体: struct pppoe_tag { __u16 tag_type; __u16 tag_len; &n
- Linux cp 实现强行覆盖
dcj3sjt126com
linux
发现在Fedora 10 /ubutun 里面用cp -fr src dest,即使加了-f也是不能强行覆盖的,这时怎么回事的呢?一两个文件还好说,就输几个yes吧,但是要是n多文件怎么办,那还不输死人呢?下面提供三种解决办法。 方法一
我们输入alias命令,看看系统给cp起了一个什么别名。
[root@localhost ~]# aliasalias cp=’cp -i’a
- Memcached(一)、HelloWorld
frank1234
memcached
一、简介
高性能的架构离不开缓存,分布式缓存中的佼佼者当属memcached,它通过客户端将不同的key hash到不同的memcached服务器中,而获取的时候也到相同的服务器中获取,由于不需要做集群同步,也就省去了集群间同步的开销和延迟,所以它相对于ehcache等缓存来说能更好的支持分布式应用,具有更强的横向伸缩能力。
二、客户端
选择一个memcached客户端,我这里用的是memc
- Search in Rotated Sorted Array II
hcx2013
search
Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given ta
- Spring4新特性——更好的Java泛型操作API
jinnianshilongnian
spring4generic type
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装JDK
liuxingguome
centos
1、行卸载原来的:
[root@localhost opt]# rpm -qa | grep java
tzdata-java-2014g-1.el6.noarch
java-1.7.0-openjdk-1.7.0.65-2.5.1.2.el6_5.x86_64
java-1.6.0-openjdk-1.6.0.0-11.1.13.4.el6.x86_64
[root@localhost
- 二分搜索专题2-在有序二维数组中搜索一个元素
OpenMind
二维数组算法二分搜索
1,设二维数组p的每行每列都按照下标递增的顺序递增。
用数学语言描述如下:p满足
(1),对任意的x1,x2,y,如果x1<x2,则p(x1,y)<p(x2,y);
(2),对任意的x,y1,y2, 如果y1<y2,则p(x,y1)<p(x,y2);
2,问题:
给定满足1的数组p和一个整数k,求是否存在x0,y0使得p(x0,y0)=k?
3,算法分析:
(
- java 随机数 Math与Random
SaraWon
javaMathRandom
今天需要在程序中产生随机数,知道有两种方法可以使用,但是使用Math和Random的区别还不是特别清楚,看到一篇文章是关于的,觉得写的还挺不错的,原文地址是
http://www.oschina.net/question/157182_45274?sort=default&p=1#answers
产生1到10之间的随机数的两种实现方式:
//Math
Math.roun
- oracle创建表空间
tugn
oracle
create temporary tablespace TXSJ_TEMP
tempfile 'E:\Oracle\oradata\TXSJ_TEMP.dbf'
size 32m
autoextend on
next 32m maxsize 2048m
extent m
- 使用Java8实现自己的个性化搜索引擎
yangshangchuan
javasuperword搜索引擎java8全文检索
需要对249本软件著作实现句子级别全文检索,这些著作均为PDF文件,不使用现有的框架如lucene,自己实现的方法如下:
1、从PDF文件中提取文本,这里的重点是如何最大可能地还原文本。提取之后的文本,一个句子一行保存为文本文件。
2、将所有文本文件合并为一个单一的文本文件,这样,每一个句子就有一个唯一行号。
3、对每一行文本进行分词,建立倒排表,倒排表的格式为:词=包含该词的总行数N=行号