- 使用Node.js实现RESTful API
chiwan3432
json开发工具ruby
RESTful基础概念REST(RepresentationalStateTransfer)描述了一个架构样式的网络系统,它首次出现在2000年RoyFielding的博士论文中。在REST服务中,应用程序状态和功能可以分为各种资源。资源向客户端公开,客户端可以对资源进行增删改操作。资源的例子有:应用程序对象、数据库记录、算法等等。REST通过抽象资源,提供了一个非常容易理解和使用的API,它使用
- 论文笔记(七十二)Reward Centering(一)
墨绿色的摆渡人
文章论文阅读
RewardCentering(一)文章概括摘要1奖励中心化理论文章概括引用:@article{naik2024reward,title={RewardCentering},author={Naik,AbhishekandWan,YiandTomar,MananandSutton,RichardS},journal={arXivpreprintarXiv:2405.09999},year={202
- AI推介-多模态视觉语言模型VLMs论文速览(arXiv方向):2024.07.20-2024.07.25
小小帅AIGC
VLM论文时报人工智能语言模型自然语言处理大语言模型VLM视觉语言模型论文推送
文章目录~1.LPGen:EnhancingHigh-FidelityLandscapePaintingGenerationthroughDiffusionModel2.HighEfficiencyImageCompressionforLargeVisual-LanguageModels3.Q-Ground:ImageQualityGroundingwithLargeMulti-modalityM
- 【AI视野·今日NLP 自然语言处理论文速览 第八十期】Fri, 1 Mar 2024
hitrjj
LLMNLPPapers人工智能自然语言处理NLPLLM大语言模型
AI视野·今日CS.NLP自然语言处理论文速览Fri,1Mar2024Totally67papers上期速览✈更多精彩请移步主页DailyComputationandLanguagePapersLooseLIPSSinkShips:AskingQuestionsinBattleshipwithLanguage-InformedProgramSamplingAuthorsGabrielGrand,V
- 论文笔记:Enhancing Sentence Embeddings in Generative Language Models
UQI-LIUWJ
论文阅读语言模型人工智能
2024ICIC1INTRO对于文本嵌入,过去几年的相关研究主要集中在像BERT和RoBERTa这样的判别模型上。这些模型固有的语义空间各向异性,往往需要通过大量数据集进行微调,才能生成高质量的句子嵌入。——>需要较大的训练批次,这会消耗大量的计算资源一些前沿的工作将焦点转向了最近开发的生成模型,期望利用其先进的文本理解能力,直接对输入句子进行编码,而无需额外的反向传播由于句子表示和自回归语言建模
- 读论文:Generation of 3D molecules in pockets via a language model (Lingo3Dmol)
LastWhisperw
语言模型人工智能自然语言处理
基于线性序列(例如SMILES)或图表示的的分子生成模型已经吸引了基于结构的药物设计领域的广泛关注,但这些模型在捕获3维空间交互时还不够强,也因此经常生成我们不希望产生的分子结构。为了解决这些问题,我们提出Lingo3DMol,一个基于口袋的3维分子生成方案,将语言模型和几何深度学习技术结合起来。为了帮助模型学习分子拓扑学和原子的空间位置,我们还提出一个新的分子表示方法,基于片段的简化分子xxxx
- 【集宁师范学院毕业论文】小区物业管理系统的设计与实现
毕设指导Martin
数据库智能手机springbootjavaoracle后端科技
注:仅展示部分文档内容和系统截图,需要完整的视频、代码、文章和安装调试环境请私信up主。摘要本文主要展示了小区物业管理系统的设计与开发过程。小区物业管理系统是将所涉及到的小区管理事务利用计算机技术组织起来,实现小区事务方便高效的管理,同时极大地方便了小区住户的日常生活.本系统采用近几年新兴的C#语言作为编程语言和发展日趋成熟的ASP.NET技术作为创建应用程序的方式,并且使用微软公司的SQLSer
- 计算机科学与技术毕业论文选题【精选】
坷拉博士
毕业论文javaservlet服务器
论文题目的研究创新一般来说有三种:研究内容创新、研究方法创新和研究结果创新,满足这三种的任何一种都算是创新。我是资深论文从业者,每年不包括修改的论文都有几十篇,所以这方面经验我是比较丰富的。就经验来看,导师审核并不会在乎创新,甚至有时候你的论文越创新,被毙的风险越大,关于这一点我在之前的文章中系统分析过。此外,如果导师非要很新的题目,可以加一些限定范围的前缀之类的,这种最容易。但是对你自己来说要清
- 直驱永磁伺服运动系统的优化架构与代理模型解析在高动态运动控制中的应用【matlab/simulink】
坷拉博士
架构matlabjava
✅博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。✅具体问题可以私信或扫描文章底部二维码。直驱永磁伺服运动系统因其卓越的性能、精度和可靠性,取代了许多具有机械传动结构的传统伺服系统。随着对直驱伺服系统性能要求的提高,且多轴直驱运动系统失去了机械传动结构的解耦特性,直驱永磁伺服运动系统中各部分(如直驱电机、运动轨迹、驱动器和连杆)之间的耦合关系
- 点云配准(点云拼接)论文综述
点云SLAM
点云数据处理技术点云数据处理点云配准DeepICPICP深度学习配准方法特征匹配
点云配准(点云拼接)论文综述1.引言点云配准(PointCloudRegistration)是三维计算机视觉与机器人感知领域的核心任务,其目标是通过几何变换将多个点云对齐至统一坐标系,形成完整的场景表示。该技术广泛应用于自动驾驶、增强现实、工业检测、医学影像等领域。随着传感器技术(如LiDAR、RGB-D相机)的进步与深度学习的发展,点云配准方法经历了从传统优化算法到数据驱动模型的演变。本文系统综
- Qwen2.5 技术报告
三谷秋水
大模型机器学习人工智能语言模型机器学习人工智能
24年12月来自通义千问的论文“Qwen2.5TechnicalReport”。本报告介绍Qwen2.5,这是一系列全面的大语言模型(LLM),旨在满足多样化的需求。与之前的迭代相比,Qwen2.5在预训练和后训练阶段都有显著的改进。在预训练方面,将高质量的预训练数据集从之前的7万亿个token扩展到18万亿个token,为常识、专家知识和推理能力提供坚实的基础。在后训练方面,用超过100万个样本
- 基于Python的PDF文件自动下载爬虫技术——详细教程与实例
Python爬虫项目
2025年爬虫实战项目pythonpdf爬虫开发语言信息可视化
1.引言在信息时代,许多网站提供了PDF格式的文档,如新闻报道、学术论文、合同文件等。对于科研人员或数据分析师来说,批量下载和分析这些PDF文件是非常有用的。Python作为一种高效且易于学习的编程语言,在网络数据抓取(即爬虫技术)方面拥有强大的库和工具,使得自动化下载网站中的PDF文件变得十分简单。在本篇博客中,我们将详细介绍如何使用Python爬虫技术抓取网页中的所有PDF文件,并自动下载到本
- 【AI论文】S*: 针对代码生成的测试时缩放方法
东临碣石82
人工智能
摘要:在多个领域中,增加大型语言模型(LLM)测试时的计算量已展现出广阔前景,但在代码生成方面,尽管数学领域已对此进行了深入研究,该方向仍探索不足。在本文中,我们提出了S,这是首个混合测试时缩放框架,能显著提升生成代码的覆盖率和选择准确性。S在现有的并行缩放范式基础上引入了顺序缩放,以突破性能极限。此外,它还利用了一种新颖的选择机制,该机制能自适应地生成用于成对比较的区别性输入,并结合执行基础信息
- 用Python爬取B站视频的实践与技术分析(通俗易懂)
笔记python开发语言c语言课程设计前端
标题:用Python爬取B站视频的实践与技术分析摘要:本论文介绍了如何使用Python编写网络爬虫程序来爬取B站(哔哩哔哩)视频的实际步骤和技术细节。通过发送网络请求和解析网页内容,我们可以获取到视频的标题和链接。本文将详细解释爬取B站视频的过程,并提供通俗易懂的代码示例,旨在帮助读者理解爬虫技术并能够自己动手实践。引言:随着网络视频的普及,越来越多的用户在B站上观看和分享视频内容。然而,有时我们
- Amazon Aurora深度探索(一)
仲培艺
数据库Amazon-Aurora
【导语】Amazon的Aurora自从问世,就备受关注,其性能和实现架构是被关注的热点。2017年,Amazon发表了一篇论文,披露其实现的一些技术细节。本文在此背景下,对Aurora系统的实现从整体架构、存储、事务处理三个方面进行深入探讨,并从数据库内核技术实现的角度对Aurora做了一定的推测。2017年,Amazon在SIGMOD上发表了论文《AmazonAurora:DesignConsi
- 【动手学运动规划】2.6 Reeds Shepp曲线
自动驾驶小白说
动手学运动规划自动驾驶算法运动规划
我出来打工,我不惦记钱,我惦记什么?—武林外传黄豆豆代码及环境配置:请参考环境配置和代码运行!ReedsShepp,通常简称为RS曲线,是一种用于路径规划的算法,由J.A.Reeds和L.A.Shepp在1990年的论文《OptimalPathsforaCarThatGoesBothForwardsandBackwards》中提出。该算法主要用于描述机器人或车辆在平面上的运动轨迹,特别是在需要考虑
- Word——论文排版技巧总结
Irving.Gao
Win10实用软件word
Word毕业论文排版:最详细教学更新题注Ctrl+A全选;F9更新。快速加入参考文献关联Word与Zotero参考文献引用格式:选择带有numeric的:
- Word不会排版!看这里,3分钟教你学会30个排版技巧
自学职场技能
word办公word排版word技巧
时光如流水,很快又要到一年一度的毕业季了。毕业论文这个让人爱恨兼备的小妖精又要出来兴风作浪了,一班几十上百人的论文排版还真是“各有千秋”。今天小编给大家分享一些Word排版技巧,希望可以帮助到大家哦!一:段落排版在写论文的时候,因为篇幅过长,可能大家需要对一些段落进行调整。键盘上有上下箭头的按键。先选中需要段落,然后按着【Shift+Alt+↑】或【Shift+Alt+↓】。向上的箭头就是将段落向
- 论文解读(全头皮重建方向):3DCMM
FLOWVERSE
3d3D人头补全
从面部到完整头部:3DCMM的技术原理解析引言在计算机图形学和人体工学领域,3D头部模型的需求日益增加。无论是虚拟化身的创建还是头盔的个性化设计,仅有面部模型往往不足以满足要求,完整的头部几何(包括头皮)才是关键。传统的3D可变形模型(3DMM)多集中于面部重建,头皮区域因数据稀缺和技术限制常被忽略。2022年发表于VRCAI’22的论文《3DCMM:3DComprehensiveMorphabl
- python阈值计算_基于Python的阈值分割算法实现(二)
weixin_39872222
python阈值计算
引言前文我们讨论了关于实现OTSU算法的问题,该算法主要是针对于特征值阈值的确定,这个值可以用于论文讨论和说明。但实际情况中,我们需要对图像进行各种滤波,预处理,那么此时我们可能需要一种带坐标和投影的分割结果,本文就将带大家实现对图像进行阈值分割后进行结果的输出。本文代码共包含了四种不同的分割算法,分别是三角阈值分割法、Riddler-Calvard分割法、自适应局部均值分割法、自适应局部高斯分割
- python 语音转文本中文——DeepSpeech
drebander
python开发语言DeepSpeech
DeepSpeech简介与音频转文本实践DeepSpeech是由Mozilla开发的一种开源语音识别引擎,基于深度学习技术,采用端到端架构,可以高效地将语音转换为文本。其核心算法受BaiduDeepSpeech论文启发,使用RecurrentNeuralNetwork(RNN)处理语音数据。一、DeepSpeech的原理1.核心组件声学模型:将语音波形转换为概率分布表示。语言模型:对语音识别结果进
- 【PyTorch项目实战】图像分割 —— U-Net:Semantic segmentation with PyTorch
胖墩会武术
深度学习PyTorch项目实战pythonunetpytorch
文章目录一、项目介绍二、项目实战2.1、环境搭建2.1.1、下载源码2.1.2、下载预训练模型2.1.3、下载训练集2.2、环境配置2.3、代码优化+架构优化2.4、模型预测:predict.pyU-Net是一种用于生物医学图像分割的卷积神经网络架构,最初由OlafRonneberger等人于2015年提出。论文:U-Net:ConvolutionalNetworksforBiomedicalIm
- 【matlab数学建模项目】matlab实现HSV空间的森林火灾监测系统——森林火灾监测系统
阿里matlab建模师
matlab精品科研项目数学建模matlab开发语言科研项目算法美赛全国大学生数学建模竞赛
MATLAB实现HSV空间森林火灾监测系统1、项目下载:本项目完整讲解和全套实现源码见下资源,有需要的朋友可以点击进行下载说明文档(点击下载)全套源码+学术论文基于MATLAB的HSV空间森林火灾监测系统的技术实现与应用-机器学习-HSV色彩空间-图像处理-森林火灾监测-matlab更多阿里matlab精品数学建模项目可点击下方文字链接直达查看:matlab精品数学建模项目合集(算法+源码+论文)
- Deepseek辅助写毕业论文,学校要AIGC了,什么工具可以查AI率?
我是宝库
AIGC人工智能AI写作学习方法经验分享深度学习chatgpt
Deepseek最近真的是爆火,很多同学在写论文的时候可能会用到Deepseek辅助写作。但是现在无论是投稿还是学校的毕业论文,基本上都是要检测论文的AIGC率了。也就是论文的AI率,如果论文AI率不达标,是会被认定为学术不端的。现在有专门检查查论文AIGC率的工具了,无论是中文和英文都可以检测。如果自己有用Deepseek或者其他AI工具协助论文写作,不确定自己的论文是否有AI风险,可以先用检测
- 论文学习3:深度学习增强的光声成像(PAI)的最新进展(综述)
superace7911
基于机器学习的光声图像处理机器学习图像处理
原文链接有空可以细看,这里中列出了文中提到的部分研究结果写作大纲1.引言光声成像(PAI)的介绍,它结合了光学和超声成像的优点,为生物医学成像提供了一种有前景的模态。深度学习(DL)在解决PAI中存在的技术限制(如硬件限制、生物特征信息缺乏等)方面的潜力。2.DL方法的原理介绍DL的子集:监督学习、无监督学习和强化学习。详细说明代表性DL架构:卷积神经网络(CNN)、U-形神经网络(U-Net)和
- Pytorch实现之混合成员GAN训练自己的数据集
这张生成的图像能检测吗
优质GAN模型训练自己的数据集pytorch生成对抗网络人工智能python深度学习机器学习计算机视觉
简介简介:提出一种新的MMGAN架构,使用常见生成器分布的混合对每个数据分布进行建模。由于生成器在多个真实数据分布之间共享,高度共享的生成器(通过混合权重反映)捕获分布的公共方面,而非共享的生成器捕获独特方面。论文题目:MIXEDMEMBERSHIPGENERATIVEADVERSARIALNETWORKS(混合成员生成对抗网络)会议:IEEEInternationalConferenceonIm
- 9、论文阅读:无监督的感知驱动深水下图像增强
Maker~
图像增强论文阅读深度学习计算机视觉
Perception-DrivenDeepUnderwaterImageEnhancementWithoutPairedSupervision前言引言相关工作UIE模型基于非物理模型基于物理模型基于深度学习质量度量在图像增强中的应用方法论问题表述PQR模型PDD网络生成器损失函数实验A.数据集B.训练细节C.实验结果**PQR模型结果****定量UIE结果****定量UIE结果****可视化增强结
- Pytorch实现论文:基于多尺度融合生成对抗网络的水下图像增强
这张生成的图像能检测吗
GAN系列pytorch生成对抗网络人工智能深度学习神经网络计算机视觉python
简介简介:提出了一种新型的水下图像增强算法,基于多尺度融合生成对抗网络,名为UMSGAN,以解决低对比度和颜色失真的问题。首先经过亮度的处理,将处理后的图像输入设计的MFFEM模块和RM模块生成图像。该算法旨在适应各种水下场景,提供颜色校正和细节增强。论文题目:Underwaterimageenhancementbasedonmultiscalefusiongenerativeadversaria
- 文献检索能力:Grok 3 beta仍有欠缺,但可能是目前免费大模型里最强的
stereohomology
大语言模型对比人工智能Grok3beta
各种大模型之所以在这方面一直踟蹰不前,推测主要是为了回避知识产权纠纷方面的原因。但回避知识产权问题不应该是将doi和论文任意对应的借口。测试了某个文献问题。推荐的论文和doi无法对应。我表达了不满之后,发现进一步推荐的doi居然是真实的了,虽然跟文献还是不太容易对应,但相比之下,已经有接近50%的真实度。其它大模型碰到这个问题则全是瞎扯。
- 论文修改阶段如何与导师沟通
kexiaoya2013
论文笔记论文阅读
在论文修改过程中,导师的指导至关重要。那么,在修改阶段如何与导师沟通呢?一、主动预约在沟通前,提前通过邮件、学术沟通工具等来预约时间,并简要说明自己的沟通需求。在首次沟通时,重点询问导师对论文的整体看法,后续再来聚焦具体问题。二、充分准备在准备过程中,列出问题的清单,并按照优先级排序,对不确定的内容附上自己的见解。提供修订模式的文档或新旧版本对比,方便导师快速了解论文的具体变化。面谈时要准备好纸质
- Java常用排序算法/程序员必须掌握的8大排序算法
cugfy
java
分类:
1)插入排序(直接插入排序、希尔排序)
2)交换排序(冒泡排序、快速排序)
3)选择排序(直接选择排序、堆排序)
4)归并排序
5)分配排序(基数排序)
所需辅助空间最多:归并排序
所需辅助空间最少:堆排序
平均速度最快:快速排序
不稳定:快速排序,希尔排序,堆排序。
先来看看8种排序之间的关系:
1.直接插入排序
(1
- 【Spark102】Spark存储模块BlockManager剖析
bit1129
manager
Spark围绕着BlockManager构建了存储模块,包括RDD,Shuffle,Broadcast的存储都使用了BlockManager。而BlockManager在实现上是一个针对每个应用的Master/Executor结构,即Driver上BlockManager充当了Master角色,而各个Slave上(具体到应用范围,就是Executor)的BlockManager充当了Slave角色
- linux 查看端口被占用情况详解
daizj
linux端口占用netstatlsof
经常在启动一个程序会碰到端口被占用,这里讲一下怎么查看端口是否被占用,及哪个程序占用,怎么Kill掉已占用端口的程序
1、lsof -i:port
port为端口号
[root@slave /data/spark-1.4.0-bin-cdh4]# lsof -i:8080
COMMAND PID USER FD TY
- Hosts文件使用
周凡杨
hostslocahost
一切都要从localhost说起,经常在tomcat容器起动后,访问页面时输入http://localhost:8088/index.jsp,大家都知道localhost代表本机地址,如果本机IP是10.10.134.21,那就相当于http://10.10.134.21:8088/index.jsp,有时候也会看到http: 127.0.0.1:
- java excel工具
g21121
Java excel
直接上代码,一看就懂,利用的是jxl:
import java.io.File;
import java.io.IOException;
import jxl.Cell;
import jxl.Sheet;
import jxl.Workbook;
import jxl.read.biff.BiffException;
import jxl.write.Label;
import
- web报表工具finereport常用函数的用法总结(数组函数)
老A不折腾
finereportweb报表函数总结
ADD2ARRAY
ADDARRAY(array,insertArray, start):在数组第start个位置插入insertArray中的所有元素,再返回该数组。
示例:
ADDARRAY([3,4, 1, 5, 7], [23, 43, 22], 3)返回[3, 4, 23, 43, 22, 1, 5, 7].
ADDARRAY([3,4, 1, 5, 7], "测试&q
- 游戏服务器网络带宽负载计算
墙头上一根草
服务器
家庭所安装的4M,8M宽带。其中M是指,Mbits/S
其中要提前说明的是:
8bits = 1Byte
即8位等于1字节。我们硬盘大小50G。意思是50*1024M字节,约为 50000多字节。但是网宽是以“位”为单位的,所以,8Mbits就是1M字节。是容积体积的单位。
8Mbits/s后面的S是秒。8Mbits/s意思是 每秒8M位,即每秒1M字节。
我是在计算我们网络流量时想到的
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
Spring 3 系列
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- 高性能mysql 之 选择存储引擎(一)
annan211
mysqlInnoDBMySQL引擎存储引擎
1 没有特殊情况,应尽可能使用InnoDB存储引擎。 原因:InnoDB 和 MYIsAM 是mysql 最常用、使用最普遍的存储引擎。其中InnoDB是最重要、最广泛的存储引擎。她 被设计用来处理大量的短期事务。短期事务大部分情况下是正常提交的,很少有回滚的情况。InnoDB的性能和自动崩溃 恢复特性使得她在非事务型存储的需求中也非常流行,除非有非常
- UDP网络编程
百合不是茶
UDP编程局域网组播
UDP是基于无连接的,不可靠的传输 与TCP/IP相反
UDP实现私聊,发送方式客户端,接受方式服务器
package netUDP_sc;
import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.Ine
- JQuery对象的val()方法执行结果分析
bijian1013
JavaScriptjsjquery
JavaScript中,如果id对应的标签不存在(同理JAVA中,如果对象不存在),则调用它的方法会报错或抛异常。在实际开发中,发现JQuery在id对应的标签不存在时,调其val()方法不会报错,结果是undefined。
- http请求测试实例(采用json-lib解析)
bijian1013
jsonhttp
由于fastjson只支持JDK1.5版本,因些对于JDK1.4的项目,可以采用json-lib来解析JSON数据。如下是http请求的另外一种写法,仅供参考。
package com;
import java.util.HashMap;
import java.util.Map;
import
- 【RPC框架Hessian四】Hessian与Spring集成
bit1129
hessian
在【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中介绍了基于Hessian的RPC服务的实现步骤,在那里使用Hessian提供的API完成基于Hessian的RPC服务开发和客户端调用,本文使用Spring对Hessian的集成来实现Hessian的RPC调用。
定义模型、接口和服务器端代码
|---Model
&nb
- 【Mahout三】基于Mahout CBayes算法的20newsgroup流程分析
bit1129
Mahout
1.Mahout环境搭建
1.下载Mahout
http://mirror.bit.edu.cn/apache/mahout/0.10.0/mahout-distribution-0.10.0.tar.gz
2.解压Mahout
3. 配置环境变量
vim /etc/profile
export HADOOP_HOME=/home
- nginx负载tomcat遇非80时的转发问题
ronin47
nginx负载后端容器是tomcat(其它容器如WAS,JBOSS暂没发现这个问题)非80端口,遇到跳转异常问题。解决的思路是:$host:port
详细如下:
该问题是最先发现的,由于之前对nginx不是特别的熟悉所以该问题是个入门级别的:
? 1 2 3 4 5
- java-17-在一个字符串中找到第一个只出现一次的字符
bylijinnan
java
public class FirstShowOnlyOnceElement {
/**Q17.在一个字符串中找到第一个只出现一次的字符。如输入abaccdeff,则输出b
* 1.int[] count:count[i]表示i对应字符出现的次数
* 2.将26个英文字母映射:a-z <--> 0-25
* 3.假设全部字母都是小写
*/
pu
- mongoDB 复制集
开窍的石头
mongodb
mongo的复制集就像mysql的主从数据库,当你往其中的主复制集(primary)写数据的时候,副复制集(secondary)会自动同步主复制集(Primary)的数据,当主复制集挂掉以后其中的一个副复制集会自动成为主复制集。提供服务器的可用性。和防止当机问题
mo
- [宇宙与天文]宇宙时代的经济学
comsci
经济
宇宙尺度的交通工具一般都体型巨大,造价高昂。。。。。
在宇宙中进行航行,近程采用反作用力类型的发动机,需要消耗少量矿石燃料,中远程航行要采用量子或者聚变反应堆发动机,进行超空间跳跃,要消耗大量高纯度水晶体能源
以目前地球上国家的经济发展水平来讲,
- Git忽略文件
Cwind
git
有很多文件不必使用git管理。例如Eclipse或其他IDE生成的项目文件,编译生成的各种目标或临时文件等。使用git status时,会在Untracked files里面看到这些文件列表,在一次需要添加的文件比较多时(使用git add . / git add -u),会把这些所有的未跟踪文件添加进索引。
==== ==== ==== 一些牢骚
- MySQL连接数据库的必须配置
dashuaifu
mysql连接数据库配置
MySQL连接数据库的必须配置
1.driverClass:com.mysql.jdbc.Driver
2.jdbcUrl:jdbc:mysql://localhost:3306/dbname
3.user:username
4.password:password
其中1是驱动名;2是url,这里的‘dbna
- 一生要养成的60个习惯
dcj3sjt126com
习惯
一生要养成的60个习惯
第1篇 让你更受大家欢迎的习惯
1 守时,不准时赴约,让别人等,会失去很多机会。
如何做到:
①该起床时就起床,
②养成任何事情都提前15分钟的习惯。
③带本可以随时阅读的书,如果早了就拿出来读读。
④有条理,生活没条理最容易耽误时间。
⑤提前计划:将重要和不重要的事情岔开。
⑥今天就准备好明天要穿的衣服。
⑦按时睡觉,这会让按时起床更容易。
2 注重
- [介绍]Yii 是什么
dcj3sjt126com
PHPyii2
Yii 是一个高性能,基于组件的 PHP 框架,用于快速开发现代 Web 应用程序。名字 Yii (读作 易)在中文里有“极致简单与不断演变”两重含义,也可看作 Yes It Is! 的缩写。
Yii 最适合做什么?
Yii 是一个通用的 Web 编程框架,即可以用于开发各种用 PHP 构建的 Web 应用。因为基于组件的框架结构和设计精巧的缓存支持,它特别适合开发大型应
- Linux SSH常用总结
eksliang
linux sshSSHD
转载请出自出处:http://eksliang.iteye.com/blog/2186931 一、连接到远程主机
格式:
ssh name@remoteserver
例如:
ssh
[email protected]
二、连接到远程主机指定的端口
格式:
ssh name@remoteserver -p 22
例如:
ssh i
- 快速上传头像到服务端工具类FaceUtil
gundumw100
android
快速迭代用
import java.io.DataOutputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOExceptio
- jQuery入门之怎么使用
ini
JavaScripthtmljqueryWebcss
jQuery的强大我何问起(个人主页:hovertree.com)就不用多说了,那么怎么使用jQuery呢?
首先,下载jquery。下载地址:http://hovertree.com/hvtart/bjae/b8627323101a4994.htm,一个是压缩版本,一个是未压缩版本,如果在开发测试阶段,可以使用未压缩版本,实际应用一般使用压缩版本(min)。然后就在页面上引用。
- 带filter的hbase查询优化
kane_xie
查询优化hbaseRandomRowFilter
问题描述
hbase scan数据缓慢,server端出现LeaseException。hbase写入缓慢。
问题原因
直接原因是: hbase client端每次和regionserver交互的时候,都会在服务器端生成一个Lease,Lease的有效期由参数hbase.regionserver.lease.period确定。如果hbase scan需
- java设计模式-单例模式
men4661273
java单例枚举反射IOC
单例模式1,饿汉模式
//饿汉式单例类.在类初始化时,已经自行实例化
public class Singleton1 {
//私有的默认构造函数
private Singleton1() {}
//已经自行实例化
private static final Singleton1 singl
- mongodb 查询某一天所有信息的3种方法,根据日期查询
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
// mongodb的查询真让人难以琢磨,就查询单天信息,都需要花费一番功夫才行。
// 第一种方式:
coll.aggregate([
{$project:{sendDate: {$substr: ['$sendTime', 0, 10]}, sendTime: 1, content:1}},
{$match:{sendDate: '2015-
- 二维数组转换成JSON
tangqi609567707
java二维数组json
原文出处:http://blog.csdn.net/springsen/article/details/7833596
public class Demo {
public static void main(String[] args) { String[][] blogL
- erlang supervisor
wudixiaotie
erlang
定义supervisor时,如果是监控celuesimple_one_for_one则删除children的时候就用supervisor:terminate_child (SupModuleName, ChildPid),如果shutdown策略选择的是brutal_kill,那么supervisor会调用exit(ChildPid, kill),这样的话如果Child的behavior是gen_