LTP 4.0!单模型完成6项自然语言处理任务

公众号关注 “ML_NLP”
设为 “星标”,重磅干货,第一时间送达!

在这里插入图片描述
语言技术平台(Language Technology Platform, LTP)是哈工大社会计算与信息检索研究中心(HIT-SCIR)历时多年研发的一整套高效、高精度的中文自然语言处理开源基础技术平台。该平台集词法分析(分词、词性标注、命名实体识别)、句法分析(依存句法分析)和语义分析(语义角色标注、语义依存分析)等多项自然语言处理技术于一体。其中句法分析、语义分析等多项关键技术多次在CoNLL国际评测中获得了第1名。此外,平台还荣获了2010年中国中文信息学会科学技术一等奖、2016年黑龙江省科技进步一等奖。国内外众多研究单位和知名企业通过签署协议以及收费授权的方式使用该平台。
哈工大SCIR本科生冯云龙等同学在车万翔教授指导下,于近日对LTP进行了新一轮的全面升级,并推出了LTP 4.0版本。此次升级的主要改进为:

  • 基于多任务学习框架进行统一学习,使得全部六项任务可以共享语义信息,达到了知识迁移的效果。既有效提升了系统的运行效率,又极大缩小了模型的占用空间
  • 基于预训练模型进行统一的表示 ,有效提升了各项任务的准确率
  • 基于教师退火模型蒸馏出单一的多任务模型,进一步提高了系统的准确率
  • 基于PyTorch框架开发,提供了原生的Python调用接口,通过pip包管理系统一键安装,极大提高了系统的易用性

下表列出了新旧版LTP在精度、效率和模型大小方面的对比:

LTP 4.0!单模型完成6项自然语言处理任务_第1张图片

为了模型的小巧易用,本次发布的版本基于哈工大讯飞联合实验室发布的中文ELECTRA Small预训练模型。后续将陆续发布基于不同预训练模型的版本,从而为用户提供更多准确率和效率平衡点的选择。

测试环境如下:

  • Python 3.7
  • LTP 4.0 Batch Size = 1
  • CentOS 3.10.0-1062.9.1.el7.x86_64
  • Intel® Xeon® CPU E5-2640 v4 @ 2.40GHz

备注:速度数据在人民日报命名实体测试数据上获得,速度计算方式均为所有任务顺序执行的结果。另外,语义角色标注与语义依存新旧版采用的语料不相同,因此无法直接比较(新版语义依存使用SemEval 2016语料,语义角色标注使用CTB语料)。

欢迎访问http://ltp.ai/(点击文末“阅读原文”进行跳转),获取平台的源代码、模型及更详细的介绍信息,敬请提出反馈意见。

本期责任编辑:张伟男
本期编辑:赖勇魁


重磅!忆臻自然语言处理-学术微信交流群已成立
我们为大家整理了李航老师最新书籍的ppt课件

在这里插入图片描述


添加小助手领取,还可以进入官方交流群!

注意:请大家添加时修改备注为 [学校/公司 + 姓名 + 方向]

例如 —— 哈工大+张三+对话系统。

号主,微商请自觉绕道。谢谢!

Alt

Alt

推荐阅读:
PyTorch Cookbook(常用代码段整理合集)
通俗易懂!使用Excel和TF实现Transformer!
深度学习中的多任务学习(Multi-task-learning)——keras实现

在这里插入图片描述

你可能感兴趣的:(深度学习,自然语言处理,机器学习)