前面一篇文章中说明了Object的阻塞唤醒机制,今天我们要讲解另一个类LockSupport,在AQS中你能看见它的身影,所以需要提前了解其实现和使用机制,便于后面深入AQS的学习
JDK版本号:1.8.0_171
在源码阅读之前希望大家先去阅读几遍注释,其中介绍了LockSupport的设计,实现和使用机制,这里进行简单说明下:
上述有些术语可能令人困惑,这里我们通俗点说,首先需要理解permit(许可),这里也就是相当于一个变量标志,有兴趣可查看Hotspot源码
HotSpot Parker用condition和mutex维护了一个_counter变量,park时,变量_counter置为0,unpark时,变量_counter置为1
连续两次调用park操作,变量不会变成2,还是1,也就是说的不能叠加,你可以自己写代码验证,因为维护的是一个变量标识更新,所以park和unpark的调用没有先后顺序限制:
简单示例代码如下:
Thread test = new Thread(new Runnable() {
@Override
public void run() {
System.out.println("start");
LockSupport.park(this);// _counter为0,阻塞
System.out.println("end");
}
});
test.start();
Thread.sleep(3000);
System.out.println("ready notify");
// 线程对应的_counter置为1,同时唤醒阻塞的线程,唤醒的线程消耗掉1置为0
LockSupport.unpark(test);
在AbstractQueuedSynchronizer中使用了LockSupport实现线程阻塞和唤醒操作,所以有必要先进行了解,怎么通过LockSupport实现FIFO互斥锁呢?源码注释处已经提供了思路,非队首线程或者不能更新锁标识的都需要被阻塞,还是挺巧妙的,可以好好理解理解
public class FIFOMutex {
public static void main(String[] args) {
FIFOMutex lock = new FIFOMutex();
new Thread(new Runnable() {
@Override
public void run() {
System.out.println(Thread.currentThread()+"111");
lock.lock();
System.out.println(Thread.currentThread()+"111");
}
}).start();
new Thread(new Runnable() {
@Override
public void run() {
System.out.println(Thread.currentThread()+"222");
lock.lock();
System.out.println(Thread.currentThread()+"222");
}
}).start();
new Thread(new Runnable() {
@Override
public void run() {
System.out.println(Thread.currentThread()+"333");
lock.lock();
System.out.println(Thread.currentThread()+"333");
}
}).start();
Thread.sleep(1000);
lock.unlock();
Thread.sleep(1000);
lock.unlock();
}
private final AtomicBoolean locked = new AtomicBoolean(false);
private final Queue<Thread> waiters
= new ConcurrentLinkedQueue<Thread>();
public void lock() {
boolean wasInterrupted = false;
Thread current = Thread.currentThread();
waiters.add(current);
// Block while not first in queue or cannot acquire lock
// 非队首线程或者CAS获取不到锁标识则进行阻塞
while (waiters.peek() != current ||
!locked.compareAndSet(false, true)) {
LockSupport.park(this);
if (Thread.interrupted()) // ignore interrupts while waiting
wasInterrupted = true;
}
waiters.remove();
if (wasInterrupted) // reassert interrupt status on exit
current.interrupt();
}
public void unlock() {
locked.set(false);
LockSupport.unpark(waiters.peek());
}
}
常量部分通过CAS来完成操作,没什么需要多说的,简单理解就好,不是重点
// Hotspot implementation via intrinsics API
private static final sun.misc.Unsafe UNSAFE;
private static final long parkBlockerOffset;
private static final long SEED;
private static final long PROBE;
private static final long SECONDARY;
static {
try {
UNSAFE = sun.misc.Unsafe.getUnsafe();
Class<?> tk = Thread.class;
parkBlockerOffset = UNSAFE.objectFieldOffset
(tk.getDeclaredField("parkBlocker"));
SEED = UNSAFE.objectFieldOffset
(tk.getDeclaredField("threadLocalRandomSeed"));
PROBE = UNSAFE.objectFieldOffset
(tk.getDeclaredField("threadLocalRandomProbe"));
SECONDARY = UNSAFE.objectFieldOffset
(tk.getDeclaredField("threadLocalRandomSecondarySeed"));
} catch (Exception ex) { throw new Error(ex); }
}
空的私有构造方法,不能被外部实例化
private LockSupport() {} // Cannot be instantiated.
大量调用了UNSAFE的native方法,有兴趣的可以去找HotSpot源码来深入学习,我们这里仅做了解使用即可
park相关方法中被调用,记录阻塞的对象,也就是监视和阻断工具查原因时保存的对象
private static void setBlocker(Thread t, Object arg) {
// Even though volatile, hotspot doesn't need a write barrier here.
UNSAFE.putObject(t, parkBlockerOffset, arg);
}
简单理解为唤醒对应的thread线程是不正确的,实际上,即使thread线程未调用park操作阻塞这里unpark操作也是可以进行的,使得thread线程的permit处于可用状态,那么之后thread线程调用park线程将不会被阻塞,因为permit可用,参考前言写些代码多理解理解
public static void unpark(Thread thread) {
if (thread != null)
UNSAFE.unpark(thread);
}
在permit处于不可用状态时,阻塞当前线程,同时可传入blocker信息,同时注意被唤醒条件有以下三种:
被唤醒的原因不会被返回,所以需要调用方自行检查是什么原因
public static void park() {
UNSAFE.park(false, 0L);
}
public static void park(Object blocker) {
Thread t = Thread.currentThread();
// 这个地方在阻塞前保存了blocker信息
setBlocker(t, blocker);
UNSAFE.park(false, 0L);
// 被唤醒之后被将blocker信息置空
setBlocker(t, null);
}
在permit处于不可用状态时,阻塞当前线程nanos毫秒,同时可传入blocker信息,唤醒机制和park()类似,除了多了一个超时条件,当然这里是超时自动唤醒的机制
public static void parkNanos(long nanos) {
if (nanos > 0)
UNSAFE.park(false, nanos);
}
public static void parkNanos(Object blocker, long nanos) {
if (nanos > 0) {
Thread t = Thread.currentThread();
setBlocker(t, blocker);
UNSAFE.park(false, nanos);
setBlocker(t, null);
}
}
在permit处于不可用状态时,阻塞当前线程到deadline时间点,同时可传入blocker信息,与parkNanos类似
public static void parkUntil(long deadline) {
UNSAFE.park(true, deadline);
}
public static void parkUntil(Object blocker, long deadline) {
Thread t = Thread.currentThread();
setBlocker(t, blocker);
UNSAFE.park(true, deadline);
setBlocker(t, null);
}
获取线程t的blocker对象信息,也就是被阻塞前通过setBlocker(t, blocker)传入的对象信息
public static Object getBlocker(Thread t) {
if (t == null)
throw new NullPointerException();
return UNSAFE.getObjectVolatile(t, parkBlockerOffset);
}
这个方法是由于多线程随机数生成器ThreadLocalRandom的package访问权限限制不能被这个包下的类使用,复制了一份实现出来,在StampedLock中被使用,有兴趣可以去了解,以后会在StampedLock的源码中进行说明
/**
* Returns the pseudo-randomly initialized or updated secondary seed.
* Copied from ThreadLocalRandom due to package access restrictions.
*/
static final int nextSecondarySeed() {
int r;
Thread t = Thread.currentThread();
if ((r = UNSAFE.getInt(t, SECONDARY)) != 0) {
r ^= r << 13; // xorshift
r ^= r >>> 17;
r ^= r << 5;
}
else if ((r = java.util.concurrent.ThreadLocalRandom.current().nextInt()) == 0)
r = 1; // avoid zero
UNSAFE.putInt(t, SECONDARY, r);
return r;
}
那么LockSupport的阻塞唤醒机制和Object的阻塞唤醒机制有什么区别呢?
本文分析了LockSupport的使用和源码,简单说明了Hotspot源码中对应的实现机制,方便各位理解,本质上而言还是很好理解的,其实对于我们而言更重要的在于使用,在线程阻塞唤醒机制上的使用需要大家多理解理解,下篇文章我们就开始进行AQS的源码学习了,当然要好好理解下LockSupport
以上内容如有问题欢迎指出,笔者验证后将及时修正,谢谢