- python--自动化的机器学习(AutoML)
Q_ytsup5681
python自动化机器学习
自动化机器学习(AutoML)是一种将自动化技术应用于机器学习模型开发流程的方法,旨在简化或去除需要专业知识的复杂步骤,让非专家用户也能轻松创建和部署机器学习模型**[^3^]。具体介绍如下:1.自动化的概念:自动化是指使设备在无人或少量人参与的情况下完成一系列任务的过程。这一概念随着电子计算机的发明和发展而不断进化,从最初的物理机械到后来的数字程序控制,再到现在的人工智能和机器学习,自动化已经渗
- RAID的介绍和实战操作
一RAID的介绍RAID(RedundantAarryofIndependentDisks):廉价磁盘冗余阵列是一种通过将多个物理磁盘组合成一个逻辑单元来提高数据存储性能、可靠性或两者兼顾的技术。作用:提高性能:通过并行读写(数据分块)加速数据访问。增强容错能力:通过冗余数据(如镜像或校验)防止磁盘故障导致的数据丢失。扩展存储容量:将多个磁盘合并为更大逻辑单元。(简单说就是提高容错以及读写速率)类
- 数据湖与数据仓库在云平台的融合架构:Delta Lake实战指南
AI云原生与云计算技术学院
AI云原生与云计算数据仓库架构ai
数据湖与数据仓库在云平台的融合架构:DeltaLake实战指南关键词:数据湖,数据仓库,云平台,融合架构,DeltaLake,湖仓一体,数据治理摘要:本文深入探讨数据湖与数据仓库在云平台的融合架构,以DeltaLake为核心技术载体,解析湖仓融合的技术原理、实施路径及最佳实践。通过对比传统数据架构的痛点,阐述DeltaLake如何通过ACID事务、Schema管理、时间旅行等特性实现非结构化数据湖
- ASP .NET Core 8实现实时Web功能
发粪的屎壳郎
ASP.NETCore8后端服务框架搭建asp.netcore8signalr
ASP.NETCoreSignalR是一个开放源代码库,可用于简化向应用添加实时Web功能。实时Web功能使服务器端代码能够将内容推送到客户端。以下是ASP.NETCoreSignalR的一些主要功能:自动处理连接管理同时向所有连接的客户端发送消息。例如聊天室向特定客户端或客户端组发送消息SignalR支持以下用于处理实时通信的技术(按正常回退的顺序):WebSocketServer-Sent事件
- 聚众识别漏检难题?陌讯多尺度检测实测提升 92%
一、开篇痛点:复杂场景下的聚众识别困境在安防监控、大型赛事等场景中,实时聚众识别是保障公共安全的核心技术。但传统视觉算法常面临三大难题:一是密集人群重叠导致小目标漏检率超30%,二是光照变化(如夜间逆光)引发误报率飙升,三是复杂背景干扰下实时性不足(FPS<15)。某景区监控项目曾反馈,开源模型在节假日人流高峰时,因漏检导致预警延迟达20秒,存在严重安全隐患。这些问题的根源在于传统算法的局限性:单
- 除了猫粮和猫罐头,资深铲屎官还会喂这种
香蕉码头
相信绝大多数养猫的人平时喂猫一般都选择猫粮+罐头,这样的方法,但是今天推荐另外的一种高阶喂猫方法,就是冻干!什么是冻干呢?冻干,顾名思义就是用低温脱水技术,让肉里的水分迅速脱离,保持营养的同时,还利于保存。一般来说,冻干是脱水后的产物,所以很多斤鲜肉,才能制作出一斤冻干,所以冻干的价格自然就很贵。冻干也分主食冻干和零食冻干主食冻干可以代替猫粮长期喂食,因为除了肉本身之外,主食冻干还添加了不少猫咪需
- 人人皆有神功:AI如何改变程序员的江湖地位?
nbsaas-boot
人工智能大数据
在人类的历史中,每一次技术革命都重新洗牌了社会的力量结构:工业革命带来机器力量的爆发,信息时代成就了程序员的黄金时代。而如今,随着通用人工智能(AGI)和大模型技术的突飞猛进,我们正在步入一个**“人人皆有神功”的AI江湖时代**。当AI成为每个人的智能助手,编程是否还重要?程序员将何去何从?本文将以“武林江湖”的隐喻,探索AI时代的技术平权与社会重构。一、技术平权真的来了吗?过去,程序员之所以被
- SQL 常用版本语法概览:标准演进与关键语法分析
一、引言SQL(StructuredQueryLanguage,结构化查询语言)是关系型数据库系统的核心语言,自1986年成为ANSI和ISO标准以来,经历了多次版本演进,不断增强语义表达能力以适应复杂的企业数据需求。随着数据库技术的不断发展,各大数据库厂商(如Oracle、SQLServer、PostgreSQL、MySQL等)在实现标准的基础上扩展了大量方言语法,使得掌握SQL的标准语法版本成
- 二维码在教学中的应用
小尘老师
7月7日,阅读《现代极简教育技术》P174-180模块二主要是将二维码在教学中的灵活应用。二维码在生活中非常常见,大部分人看到都知道那是二维码。但真要问什么是二维码,应该有很多人跟我一样是有点懵的。没想到二维码背后还有这么多的知识。真的是长见识了。关于教师如何设计二维码,黎教授也分成5个小点教大家。主要是网页,PPT,word文件,图片音视频,其他二维码。黎教授介绍的方法中,草料二维码我用的是最多
- 大型语言模型的智能本质是什么
ZhangJiQun&MXP
教学2021论文2024大模型以及算力语言模型人工智能自然语言处理
大型语言模型的智能本质是什么基于海量数据的统计模式识别与生成系统,数据驱动的语言模拟系统,其价值在于高效处理文本任务(如写作、翻译、代码生成),而非真正的理解与创造大型语言模型(如GPT-4、Claude等)的智能本质可概括为基于海量数据的统计模式识别与生成系统,其核心能力源于对语言规律的深度学习,但缺乏真正的理解与意识。以下从本质特征、技术机制、典型案例及争议点展开分析:一、智能本质的核心特征统
- C语言---坑人大冒险游戏开发详解
本文将深入解析一款基于控制台的C语言RPG游戏《坑人大冒险》Beta0.1版本,从游戏设计到代码实现进行全面解读。附完整可运行代码,带你掌握控制台游戏开发的核心技术!看在源代码免费的份上,点个关注吧(づ ̄3 ̄)づ关注是我更新的动力 ̄︶ ̄∗ ̄︶ ̄∗)作者会分享更多涉及到各种编程语言的项目!(^∀^●)ノシ目录1.游戏概述2.游戏核心架构2.1数据结构设计游戏采用结构体存储角色和怪物数据:2.2游戏模
- C++ Primer Plus 第6版 中文版 清晰有书签PDF+源代码
内容提要:C++是在C语言基础上开发的一种集面向对象编程、通用编程和传统的过程化编程于一体的编程语言,是C语言的超集。《C++PrimerPlus中文版》由StehpenPrata著,张海龙、袁国忠译:是根据2003年的ISO/ANSIC++标准编写的。通过大量短小精悍的程序详细而全面地阐述了C++的基本概念和技术。全书分为18章和10个附录,分别介绍了C++程序的运行方式、基本数据类型、复合数据
- MDB 4.3 协议文档详细介绍
MDB4.3协议文档详细介绍【下载地址】MDB4.3协议文档详细介绍MDB4.3协议是2019年发布的多点总线通信协议,专为售货机与纸币器、硬币器、刷卡器等设备设计。该版本新增了远程售货机功能,支持无现金支付和移动应用操作,极大提升了用户体验。此外,协议还优化了触摸屏处理,避免无效操作,并引入了购物车和优惠券功能,丰富了促销方式。MDB4.3通过技术升级,提升了售货机的操作灵活性和系统稳定性,为自
- 深入解析Battelle/movfuscator项目的后处理技术
邹滢朦
深入解析Battelle/movfuscator项目的后处理技术项目概述Battelle/movfuscator是一个独特的编译器项目,它能够将C代码转换为仅使用MOV指令的汇编代码。而其后处理器(post-processor)组件则提供了更多强大的功能扩展,可以将这些汇编代码进一步转换为使用特定指令集的版本,实现更深层次的代码混淆和优化。后处理器工作原理后处理器的工作流程分为以下几个关键步骤:首
- 前缀和与差分(免费)(一维+二维,超详细)
fjj20140622
算法c++前缀和
一.一维前缀和一、核心概念定义前缀和是一种预处理技术,通过构建数组prefix[],其中prefix[i]表示原数组arr前i个元素的和。例如:原数组:[1,3,5,7,9]前缀和数组:[1,4,9,16,25](prefix[2]=1+3=4)数学表达递推公式:prefix[i]=prefix[i-1]+arr[i-1](下标从1开始)区间和计算:sum[l,r]=prefix[r]-pr
- 成长锦囊[82]:心理咨询师在个人成长中如何设定目标?
素心人生设计
Q:素心,在进行个人自我成长时,我要如何确定设定自己的成长目标?心理咨询师小雨正在学习认知行为疗法技术,想要更熟练精通这个心理技术,也想要进行认知行为咨询师的自我成长,前来咨询。@素心人生设计:我们进入到个人成长的模块2:解析问题,为改变做准备。这个模块的目标是帮助你发现更多挑战性问题,并明确你希望这个问题如何改变。今天为大家分享识别优势、设定目标、优化目标和制定达成策略。在上一部分我们有了五因素
- 【人脸识别】FROM:提升遮挡状态下的人脸识别效果
姚路遥遥
人脸识别深度学习计算机视觉人工智能遮挡人脸识别损失
论文题目:《End2EndOccludedFaceRecognitionbyMaskingCorruptedFeatures》论文地址:https://arxiv.org/pdf/2108.09468v3.pdf代码地址:https://github.com/haibo-qiu/from1.前言人脸识别技术已经取得了显著的进展,主要归功于以下三个因素:lossfunctions:Centerlos
- 工服误检率高达40%?陌讯改进YOLOv7实战降噪50%
2501_92487859
YOLO算法视觉检测目标检测计算机视觉
开篇痛点:工业场景的视觉检测困境在工地、化工厂等高危场景,传统视觉算法面临三重挑战:环境干扰:强光/阴影导致工服颜色失真目标微小:安全帽反光标识仅占图像0.1%像素遮挡密集:工人簇拥时漏检率超35%(数据来源:CVPR2023工业检测白皮书)行业真相:某安监部门实测显示,开源YOLOv5在雾天场景误报率高达41%技术解析:陌讯算法的三大创新设计1.多模态特征融合架构#伪代码示例:可见光+红外特征融
- 渣土车识别漏检率高?陌讯算法实测降 90%
2501_92487936
目标跟踪人工智能计算机视觉目标检测算法智慧城市
在城市建筑垃圾运输管理中,渣土车的合规性监测一直是行业痛点。传统视觉算法在复杂工况下常常出现误判——阴雨天车牌识别模糊、夜间车灯眩光导致车型误分类、不同品牌渣土车混检时准确率骤降。某市政管理局的统计显示,采用传统方案时,日均漏检率高达23%,由此引发的违规倾倒投诉占比超60%。技术解析:从单模态到多特征融合的突破传统渣土车识别多依赖单一目标检测模型(如FasterR-CNN),其核心缺陷在于:特征
- 路面裂缝漏检率高?陌讯多尺度检测降 30%
2501_92487936
计算机视觉opencv人工智能深度学习算法目标检测
在市政工程与公路养护领域,路面裂缝检测是保障交通安全的关键环节。传统人工巡检不仅效率低下(日均检测≤50公里),且受主观因素影响漏检率高达15-20%[1]。而主流开源视觉算法在面对阴影干扰、多类型裂缝混杂等场景时,往往陷入"精度与速度不可兼得"的困境。本文将结合实战案例,解析陌讯视觉算法在路面裂缝检测中的技术突破与落地经验。一、技术解析:从传统方法到多模态融合架构传统裂缝检测多采用"边缘检测+形
- 考场/工厂违规用机难捕捉?3维度优化方案部署成本直降40%
2501_92487762
视觉检测计算机视觉算法目标检测
开篇痛点工业场景中传统玩手机识别面临三重挑战:小目标检测(手机平均像素占比<0.5%)、遮挡干扰(人手/物体遮挡率超60%)、实时性要求(需200ms内响应)。某安检企业反馈,开源YOLOv5在车间场景误报率高达34%。技术解析:双流特征融合架构陌讯算法创新性融合双路径特征(图1):#陌讯核心代码逻辑(简化版)defdual_path_fusion(backbone):shallow_path=C
- 复杂场景检测失效?陌讯多模态算法在千万级监控网的落地实战
2501_92473061
算法视觉检测安全计算机视觉
开篇痛点:安防监控的检测困境"明明人就在画面里,系统却毫无反应!"——这是某智慧园区安防负责人的吐槽。传统目标检测模型在安防监控场景面临三大死穴:漏报:夜间、遮挡场景下召回率骤降(实测ResNet50漏报率>40%)误报:树叶晃动、光影变化引发的误报占比超35%延迟:1080P视频流检测延迟普遍>100ms,难以满足实时响应需求技术解析:陌讯算法的三阶优化架构陌讯视觉算法采用多模态特征金字塔(MM
- 复杂场景检测老翻车?陌讯算法实测提升 40%
2501_92453489
算法视觉计算机视觉视觉检测
在工业质检、安防监控等计算机视觉落地场景中,工程师常面临棘手问题:传统算法在光照突变、目标遮挡等复杂环境下,漏检率高达20%以上,泛化能力不足成为项目落地的最大阻碍。而陌讯AI视觉算法通过架构创新,正在重新定义复杂场景下的检测精度标准。技术解析:从单模态到多模态的跨越传统目标检测模型多依赖单一RGB图像输入,在特征提取阶段容易受环境干扰。以经典的FasterR-CNN为例,其区域提议网络(RPN)
- C语言实现扫雷游戏:从经典玩法到代码构建
文章目录C语言实现扫雷游戏:从经典玩法到代码构建一、游戏简介:经典玩法回顾二、扫雷游戏的设计与实现2.1整体设计思路与技术选型核心技术栈多文件分工2.2棋盘设计:核心数据结构棋盘尺寸与扩展设计双棋盘机制2.3核心功能实现1.棋盘初始化与打印2.随机布置地雷3.地雷排查与数字计算2.4游戏流程控制4.排查逻辑完整实现三、功能扩展:提升游戏体验四、总结C语言实现扫雷游戏:从经典玩法到代码构建扫雷作为一
- 【C++特殊工具与技术】固有的不可移植的特性(3)::extern“C“
在软件开发中,混合编程是常见需求:C++调用C语言编写的底层库(如Linux系统调用)、C程序调用C++实现的算法模块,甚至C++与Ada、Fortran等其他语言交互。但不同语言在函数命名规则和调用约定上的差异,会导致链接阶段出现“无法解析的外部符号”错误。目录一、命名修饰与链接问题:CvsC++1.1C++的命名修饰机制1.2C语言的“无修饰”命名1.3链接失败的典型场景二、extern"C"
- Hadoop与云原生集成:弹性扩缩容与OSS存储分离架构深度解析
Hadoop与云原生集成的必要性Hadoop在大数据领域的基石地位作为大数据处理领域的奠基性技术,Hadoop自2006年诞生以来已形成包含HDFS、YARN、MapReduce三大核心组件的完整生态体系。根据CSDN技术社区的分析报告,全球超过75%的《财富》500强企业仍在使用Hadoop处理EB级数据,其分布式文件系统HDFS通过数据分片(默认128MB块大小)和三副本存储机制,成功解决了P
- 基于R语言的极值统计学及其在相关领域中的实践技术应用
科研的力量
语言类课程极值统计学
受到气候变化、温室效应以及人类活动等因素的影响,自然界中极端高温、极端环境污染、大洪水和大暴雨等现象的发生日益频繁;在人类社会中,股市崩溃、金融危机等极端情况也时有发生;今年的新冠疫情就是非常典型的极端现象。研究此类极端现象需要新的统计学方法,该类统计学的理论和方法都与传统的基于高斯分布的统计学模型有极大的不同。极值统计学就是专门研究自然界和人类社会中很少发生,然而发生之后有着巨大影响的极端现象的
- 原生前端JavaScript/CSS与现代框架(Vue、React)的联系、区别与运行环境(精简版)
原生前端JavaScript/CSS与现代框架(Vue、React)的联系、区别与运行环境随着Web技术的不断发展,前端开发已经从最初的原生JavaScript和CSS时代,逐步演进到以Vue、React等为代表的现代前端框架时代。对于许多刚入门或正在转型的前端开发者来说,理解原生技术和现代框架之间的联系、区别,以及各自的运行环境和条件,有助于更好地把握前端技术栈的演变趋势和实际应用场景。一、原生
- Python 轻量化环境管理利器 UV 入门与 Windows 下安装实战
wangjinjin180
pythonuvwindows
https://www.52runoob.com/index.php/2025/06/19/python-轻量化环境管理利器-uv-入门与-windows-下安装实战/Python轻量化环境管理利器UV入门与Windows下安装实战一、什么是UV(UnikernelVirtualization)UV是一种轻量化的虚拟化技术,能够将应用程序与操作系统内核打包为一个单一的运行镜像,极大减少系统资源占用
- 工业大模型应用报告:新机遇、挑战与未来展望
花生糖@
AIGC学习资料库大模型人工智能应用扩展屏应用开发AI机器学习
大模型在工业智能化发展中的新机遇、挑战与展望。以下是报告的核心内容概述:大模型为工业智能化发展带来新机遇大模型开启人工智能应用新时代,推动技术创新和应用。大模型有望成为驱动工业智能化的引擎,提高研发效率、拓展生产制造智能化应用边界、提升经营管理水平。大模型应用落地需要深度适配工业场景,解决行业知识和企业特定环境的理解问题。大模型和小模型在工业领域将长期并存小模型应用呈现倒U型分布,主要集中在生产制
- apache ftpserver-CentOS config
gengzg
apache
<server xmlns="http://mina.apache.org/ftpserver/spring/v1"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="
http://mina.apache.o
- 优化MySQL数据库性能的八种方法
AILIKES
sqlmysql
1、选取最适用的字段属性 MySQL可以很好的支持大数据量的存取,但是一般说来,数据库中的表越小,在它上面执行的查询也就会越快。因此,在创建表的时候,为了获得更好的 性能,我们可以将表中字段的宽度设得尽可能小。例如,在定义邮政编码这个字段时,如果将其设置为CHAR(255),显然给数据库增加了不必要的空间,甚至使用VARCHAR这种类型也是多余的,因为CHAR(6)就可以很
- JeeSite 企业信息化快速开发平台
Kai_Ge
JeeSite
JeeSite 企业信息化快速开发平台
平台简介
JeeSite是基于多个优秀的开源项目,高度整合封装而成的高效,高性能,强安全性的开源Java EE快速开发平台。
JeeSite本身是以Spring Framework为核心容器,Spring MVC为模型视图控制器,MyBatis为数据访问层, Apache Shiro为权限授权层,Ehcahe对常用数据进行缓存,Activit为工作流
- 通过Spring Mail Api发送邮件
120153216
邮件main
原文地址:http://www.open-open.com/lib/view/open1346857871615.html
使用Java Mail API来发送邮件也很容易实现,但是最近公司一个同事封装的邮件API实在让我无法接受,于是便打算改用Spring Mail API来发送邮件,顺便记录下这篇文章。 【Spring Mail API】
Spring Mail API都在org.spri
- Pysvn 程序员使用指南
2002wmj
SVN
源文件:http://ju.outofmemory.cn/entry/35762
这是一篇关于pysvn模块的指南.
完整和详细的API请参考 http://pysvn.tigris.org/docs/pysvn_prog_ref.html.
pysvn是操作Subversion版本控制的Python接口模块. 这个API接口可以管理一个工作副本, 查询档案库, 和同步两个.
该
- 在SQLSERVER中查找被阻塞和正在被阻塞的SQL
357029540
SQL Server
SELECT R.session_id AS BlockedSessionID ,
S.session_id AS BlockingSessionID ,
Q1.text AS Block
- Intent 常用的用法备忘
7454103
.netandroidGoogleBlogF#
Intent
应该算是Android中特有的东西。你可以在Intent中指定程序 要执行的动作(比如:view,edit,dial),以及程序执行到该动作时所需要的资料 。都指定好后,只要调用startActivity(),Android系统 会自动寻找最符合你指定要求的应用 程序,并执行该程序。
下面列出几种Intent 的用法
显示网页:
- Spring定时器时间配置
adminjun
spring时间配置定时器
红圈中的值由6个数字组成,中间用空格分隔。第一个数字表示定时任务执行时间的秒,第二个数字表示分钟,第三个数字表示小时,后面三个数字表示日,月,年,< xmlnamespace prefix ="o" ns ="urn:schemas-microsoft-com:office:office" />
测试的时候,由于是每天定时执行,所以后面三个数
- POJ 2421 Constructing Roads 最小生成树
aijuans
最小生成树
来源:http://poj.org/problem?id=2421
题意:还是给你n个点,然后求最小生成树。特殊之处在于有一些点之间已经连上了边。
思路:对于已经有边的点,特殊标记一下,加边的时候把这些边的权值赋值为0即可。这样就可以既保证这些边一定存在,又保证了所求的结果正确。
代码:
#include <iostream>
#include <cstdio>
- 重构笔记——提取方法(Extract Method)
ayaoxinchao
java重构提炼函数局部变量提取方法
提取方法(Extract Method)是最常用的重构手法之一。当看到一个方法过长或者方法很难让人理解其意图的时候,这时候就可以用提取方法这种重构手法。
下面是我学习这个重构手法的笔记:
提取方法看起来好像仅仅是将被提取方法中的一段代码,放到目标方法中。其实,当方法足够复杂的时候,提取方法也会变得复杂。当然,如果提取方法这种重构手法无法进行时,就可能需要选择其他
- 为UILabel添加点击事件
bewithme
UILabel
默认情况下UILabel是不支持点击事件的,网上查了查居然没有一个是完整的答案,现在我提供一个完整的代码。
UILabel *l = [[UILabel alloc] initWithFrame:CGRectMake(60, 0, listV.frame.size.width - 60, listV.frame.size.height)]
- NoSQL数据库之Redis数据库管理(PHP-REDIS实例)
bijian1013
redis数据库NoSQL
一.redis.php
<?php
//实例化
$redis = new Redis();
//连接服务器
$redis->connect("localhost");
//授权
$redis->auth("lamplijie");
//相关操
- SecureCRT使用备注
bingyingao
secureCRT每页行数
SecureCRT日志和卷屏行数设置
一、使用securecrt时,设置自动日志记录功能。
1、在C:\Program Files\SecureCRT\下新建一个文件夹(也就是你的CRT可执行文件的路径),命名为Logs;
2、点击Options -> Global Options -> Default Session -> Edite Default Sett
- 【Scala九】Scala核心三:泛型
bit1129
scala
泛型类
package spark.examples.scala.generics
class GenericClass[K, V](val k: K, val v: V) {
def print() {
println(k + "," + v)
}
}
object GenericClass {
def main(args: Arr
- 素数与音乐
bookjovi
素数数学haskell
由于一直在看haskell,不可避免的接触到了很多数学知识,其中数论最多,如素数,斐波那契数列等,很多在学生时代无法理解的数学现在似乎也能领悟到那么一点。
闲暇之余,从图书馆找了<<The music of primes>>和<<世界数学通史>>读了几遍。其中素数的音乐这本书与软件界熟知的&l
- Java-Collections Framework学习与总结-IdentityHashMap
BrokenDreams
Collections
这篇总结一下java.util.IdentityHashMap。从类名上可以猜到,这个类本质应该还是一个散列表,只是前面有Identity修饰,是一种特殊的HashMap。
简单的说,IdentityHashMap和HashM
- 读《研磨设计模式》-代码笔记-享元模式-Flyweight
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.Collection;
import java.util.HashMap;
import java.util.List;
import java
- PS人像润饰&调色教程集锦
cherishLC
PS
1、仿制图章沿轮廓润饰——柔化图像,凸显轮廓
http://www.howzhi.com/course/retouching/
新建一个透明图层,使用仿制图章不断Alt+鼠标左键选点,设置透明度为21%,大小为修饰区域的1/3左右(比如胳膊宽度的1/3),再沿纹理方向(比如胳膊方向)进行修饰。
所有修饰完成后,对该润饰图层添加噪声,噪声大小应该和
- 更新多个字段的UPDATE语句
crabdave
update
更新多个字段的UPDATE语句
update tableA a
set (a.v1, a.v2, a.v3, a.v4) = --使用括号确定更新的字段范围
- hive实例讲解实现in和not in子句
daizj
hivenot inin
本文转自:http://www.cnblogs.com/ggjucheng/archive/2013/01/03/2842855.html
当前hive不支持 in或not in 中包含查询子句的语法,所以只能通过left join实现。
假设有一个登陆表login(当天登陆记录,只有一个uid),和一个用户注册表regusers(当天注册用户,字段只有一个uid),这两个表都包含
- 一道24点的10+种非人类解法(2,3,10,10)
dsjt
算法
这是人类算24点的方法?!!!
事件缘由:今天晚上突然看到一条24点状态,当时惊为天人,这NM叫人啊?以下是那条状态
朱明西 : 24点,算2 3 10 10,我LX炮狗等面对四张牌痛不欲生,结果跑跑同学扫了一眼说,算出来了,2的10次方减10的3次方。。我草这是人类的算24点啊。。
然后么。。。我就在深夜很得瑟的问室友求室友算
刚出完题,文哥的暴走之旅开始了
5秒后
- 关于YII的菜单插件 CMenu和面包末breadcrumbs路径管理插件的一些使用问题
dcj3sjt126com
yiiframework
在使用 YIi的路径管理工具时,发现了一个问题。 <?php  
- 对象与关系之间的矛盾:“阻抗失配”效应[转]
come_for_dream
对象
概述
“阻抗失配”这一词组通常用来描述面向对象应用向传统的关系数据库(RDBMS)存放数据时所遇到的数据表述不一致问题。C++程序员已经被这个问题困扰了好多年,而现在的Java程序员和其它面向对象开发人员也对这个问题深感头痛。
“阻抗失配”产生的原因是因为对象模型与关系模型之间缺乏固有的亲合力。“阻抗失配”所带来的问题包括:类的层次关系必须绑定为关系模式(将对象
- 学习编程那点事
gcq511120594
编程互联网
一年前的夏天,我还在纠结要不要改行,要不要去学php?能学到真本事吗?改行能成功吗?太多的问题,我终于不顾一切,下定决心,辞去了工作,来到传说中的帝都。老师给的乘车方式还算有效,很顺利的就到了学校,赶巧了,正好学校搬到了新校区。先安顿了下来,过了个轻松的周末,第一次到帝都,逛逛吧!
接下来的周一,是我噩梦的开始,学习内容对我这个零基础的人来说,除了勉强完成老师布置的作业外,我已经没有时间和精力去
- Reverse Linked List II
hcx2013
list
Reverse a linked list from position m to n. Do it in-place and in one-pass.
For example:Given 1->2->3->4->5->NULL, m = 2 and n = 4,
return 
- Spring4.1新特性——页面自动化测试框架Spring MVC Test HtmlUnit简介
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- Hadoop集群工具distcp
liyonghui160com
1. 环境描述
两个集群:rock 和 stone
rock无kerberos权限认证,stone有要求认证。
1. 从rock复制到stone,采用hdfs
Hadoop distcp -i hdfs://rock-nn:8020/user/cxz/input hdfs://stone-nn:8020/user/cxz/运行在rock端,即源端问题:报版本
- 一个备份MySQL数据库的简单Shell脚本
pda158
mysql脚本
主脚本(用于备份mysql数据库): 该Shell脚本可以自动备份
数据库。只要复制粘贴本脚本到文本编辑器中,输入数据库用户名、密码以及数据库名即可。我备份数据库使用的是mysqlump 命令。后面会对每行脚本命令进行说明。
1. 分别建立目录“backup”和“oldbackup” #mkdir /backup #mkdir /oldbackup
- 300个涵盖IT各方面的免费资源(中)——设计与编码篇
shoothao
IT资源图标库图片库色彩板字体
A. 免费的设计资源
Freebbble:来自于Dribbble的免费的高质量作品。
Dribbble:Dribbble上“免费”的搜索结果——这是巨大的宝藏。
Graphic Burger:每个像素点都做得很细的绝佳的设计资源。
Pixel Buddha:免费和优质资源的专业社区。
Premium Pixels:为那些有创意的人提供免费的素材。
- thrift总结 - 跨语言服务开发
uule
thrift
官网
官网JAVA例子
thrift入门介绍
IBM-Apache Thrift - 可伸缩的跨语言服务开发框架
Thrift入门及Java实例演示
thrift的使用介绍
RPC
POM:
<dependency>
<groupId>org.apache.thrift</groupId>