- oceanbase 是不是架构比较复杂 和mysql对比分析
hxsln11
金融数据库oceanbase架构mysql
我先来分析用户的需求。用户的问题是关于OceanBase和MySQL的架构复杂度对比,并希望了解两者在架构上的具体差异。这是一个技术性较强的问题,用户可能是数据库开发者、架构师或者对分布式数据库感兴趣的学习者。结合上下文,用户之前已经提到过OceanBase的学习曲线较陡峭,可能是因为其分布式架构的复杂性,所以这次的问题很可能是想进一步明确OceanBase和MySQL在架构上的具体差异,以及为什
- Sqoop安装部署
愿与狸花过一生
大数据sqoophadoophive
ApacheSqoop简介Sqoop(SQL-to-Hadoop)是Apache开源项目,主要用于:将关系型数据库中的数据导入Hadoop分布式文件系统(HDFS)或相关组件(如Hive、HBase)。将Hadoop处理后的数据导出回关系型数据库。核心特性批量数据传输支持从数据库表到HDFS/Hive的全量或增量数据迁移。并行化处理基于MapReduce实现并行导入导出,提升大数据量场景的效率。自
- HarmonyOS 5 开发环境介绍
harmonyos-next
一、HarmonyOS5是什么?HarmonyOS5是华为推出的新一代分布式操作系统,基于微内核架构,专注于鸿蒙原生应用开发,不再兼容安卓APK。其核心目标是通过"一次开发、多端部署"的能力,实现全场景设备(手机、平板、智能穿戴、车机、智能家居等)的无缝协同。核心特性包括:分布式架构:设备间可自由组网,共享算力与资源;高性能内核:基于开源鸿蒙(OpenHarmony)优化,支持64位ARM、x86
- 亿级分布式系统架构演进实战(七)- 横向扩展(安全防护设计)
power-辰南
java技术架构师成长专栏springboot分布式架构设计高并发安全防护
亿级分布式系统架构演进实战(一)-总体概要亿级分布式系统架构演进实战(二)-横向扩展(服务无状态化)亿级分布式系统架构演进实战(三)-横向扩展(数据库读写分离)亿级分布式系统架构演进实战(四)-横向扩展(负载均衡与弹性伸缩)亿级分布式系统架构演进实战(五)-横向扩展(缓存策略设计)亿级分布式系统架构演进实战(六)-横向扩展(监控与日志体系)核心目标保障系统免受攻击,确保数据安全一、安全防护设计1.
- 亿级分布式系统架构演进实战(一)- 总体概要
power-辰南
java技术架构师成长专栏高并发分布式系统微服务架构设计springcloud
前言不说废话,这次分享是某500强企业真实亿级流量业务中台技术架构演进过程实战。核心目标构建一个兼具高性能、高可用、强一致性的分布式系统,支撑亿级流量场景下的稳定运行。演进路线大纲阶段一:横向扩展(应对万级QPS)核心目标:突破单机性能瓶颈,建立弹性基础[Nginx]/|\[App1][App2][App3]←无状态服务集群\|/[DBProxy]←读写分离中间件/\[Master]←写节点[Sl
- 亿级分布式系统架构演进实战(三)- 横向扩展(数据库读写分离)
power-辰南
java技术架构师成长专栏数据库mysql分布式系统springcloud架构设计
亿级分布式系统架构演进实战(一)-总体概要亿级分布式系统架构演进实战(二)-横向扩展(服务无状态化)核心目标分散数据库压力,提升读性能1.数据库架构设计数据库由原理的单实例变成主从模式,主主要负责写,从负责读。1.1主从角色定义节点类型数据流向核心职责主库读写(Write)处理事务性写操作(INSERT/UPDATE/DELETE)/部分读从库只读(Read)承担查询请求(SELECT),支持水平
- 亿级分布式系统架构演进实战(五)- 横向扩展(缓存策略设计)
power-辰南
java技术架构师成长专栏多级缓存策略springcloud分布式系统缓存一致性高并发缓存问题解决方案
亿级分布式系统架构演进实战(一)-总体概要亿级分布式系统架构演进实战(二)-横向扩展(服务无状态化)亿级分布式系统架构演进实战(三)-横向扩展(数据库读写分离)亿级分布式系统架构演进实战(四)-横向扩展(负载均衡与弹性伸缩)核心目标降低数据库读压力,提升响应速度一、多级缓存架构客户端CDN/浏览器缓存本地应用缓存分布式缓存数据库缓冲池1.1客户端缓存缓存数据类型:•静态资源(JS/CSS/图片)•
- Kafka深度解析
GarfieldEr007
Kafka/MQKafka深度解析MQ
原创文章,转载请务必将下面这段话置于文章开头处(保留超链接)。本文转发自Jason’sBlog,原文链接http://www.jasongj.com/2015/01/02/Kafka深度解析背景介绍Kafka简介Kafka是一种分布式的,基于发布/订阅的消息系统。主要设计目标如下:以时间复杂度为O(1)的方式提供消息持久化能力,即使对TB级以上数据也能保证常数时间的访问性能高吞吐率。即使在非常廉价
- SpringBoot整合阿里云、腾讯云、minio、百度云、华为云、天翼云、金山云、七牛云、移动云、网易数帆等等有关于S3协议下文分布式对象存储接口
java初学者分享
阿里云腾讯云华为云
前提:在可运行的SpringBoot的项目内引用以下JAR包整个工具的代码都在Gitee或者Github地址内gitee:solomon-parent:这个项目主要是总结了工作上遇到的问题以及学习一些框架用于整合例如:rabbitMq、reids、Mqtt、S3协议的文件服务器、mongodbgithub:GitHub-ZeroNing/solomon-parent:这个项目主要是总结了工作上遇到
- 传统金融和分布式金融
倒霉男孩
DeFi金融分布式
文章目录传统金融和分布式金融一、传统金融机构的核心问题深度剖析1.支付与清算系统的结构性缺陷2.金融排斥(FinancialExclusion)的根源3.中心化风险的爆发与传导二、DeFi的技术突破与创新机制1.支付与清算:区块链的底层重构2.普惠金融的技术民主化3.去中心化治理与透明化运作三、DeFivs传统金融的范式革命1.价值传递范式的颠覆2.风险分散机制的升级3.经济模型的创新实验四、De
- 从 0 到 1 构建 Python 分布式爬虫,实现搜索引擎全攻略
七七知享
Pythonpython分布式爬虫搜索引擎算法程序人生网络爬虫
从0到1构建Python分布式爬虫,实现搜索引擎全攻略在大数据与信息爆炸的时代,搜索引擎已然成为人们获取信息的关键入口。你是否好奇,像百度、谷歌这般强大的搜索引擎,背后是如何精准且高效地抓取海量网页数据的?本文将带你一探究竟,以Python为工具,打造属于自己的分布式爬虫,进而搭建一个简易搜索引擎,完整呈现从底层代码编写到系统搭建的全过程。通过本文的实践,我们成功打造了Python分布式爬虫,并以
- 消息中间件选型: kafka与rabbitmq的对比
HS_Henry
消息中间件rabbitmqkafka消息中间件选型
RabbitMQ总结_陈海龙的格物之路-CSDN博客https://blog.csdn.net/chl87783255/article/details/122606212kafka总结_陈海龙的格物之路-CSDN博客kafka,仅支持拉取的分布式流式平台。本文从简介、使用场景、设计、实现四个方面阐述kafka。https://blog.csdn.net/chl87783255/article/de
- RabbitMQ 与 Kafka:消息中间件的终极对比与选型指南
海上彼尚
node.jsrabbitmqkafka分布式node.js
引言在分布式系统架构中,消息中间件是异步通信的核心组件。RabbitMQ和Kafka作为两大主流技术,常被开发者拿来比较。本文深入解析两者的设计哲学、性能差异和典型场景,助你做出精准技术选型。目录引言一、核心设计差异1.定位与数据模型二、性能与架构对比1.吞吐量与延迟2.集群与扩展三、功能特性对决1.消息可靠性2.消息路由四、典型场景与选型决策1.优先选择Kafka的场景2.优先选择RabbitM
- 哈希表的前沿演进:从经典实现到未来潜力
大富大贵7
程序员知识储备1程序员知识储备2程序员知识储备3经验分享
摘要:哈希表(HashTable)作为一种基本且高效的数据结构,已广泛应用于计算机科学的各个领域。从数据库的索引、缓存系统到密码学、分布式系统中,哈希表都发挥着至关重要的作用。随着计算需求的不断增长,哈希表的性能优化及其新型变种已成为当前研究的热点。本文将探讨哈希表的经典实现方式及其优化技术,并展望未来在量子计算、分布式存储等领域的潜在应用。1.引言:哈希表作为一种具有常数时间复杂度(O(1))的
- #Hadoop全分布式安装 #mysql安装 #hive安装
砸吧砸吧
hadoophiveyarnmysql
分布式(多台机器部署不同组件)与集群(多台机器部署相同组件)概念。Linux基础命令linux具有文件数:目录、文件,从根目录开始,路径具有唯一性。pwd:显示当前路径特殊符号:/:根目录.:隐藏文件,如果路径以.开始,表示当前目录下..:当前目录下的上一级~:当前目录的home目录--help:帮助命令使用linux常用操作命令tab键:自动补全ls:显示指定目录内容默认:当前路径-a:显示所有
- Ceph数据恢复方案–分布式文件系统删除数据的恢复
San结构数据恢复
数据恢复相关ceph
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言一、Ceph的三种存储结构二、Ceph中删除数据的恢复提取1.本次案例情况简介:2.数据分析:2.1:BlueStore架构2.2分布式存储中元数据概述2.3提取元数据2.3.2:获取meta_data2.3.4.元数据整理2.3.5.计算数据地址3.数据恢复提取总结前言什么是分布式文件系统分布式文件系统(Distribu
- SVN学习
无妄无望
工具使用svn学习
1、SVN是什么SVN(Subversion)是一个开源的版本控制系统,用于跟踪文件和目录的更改。它允许团队协作开发项目,管理代码的版本历史,并支持多人同时对代码进行修改和提交。SVN是集中式版本控制系统(CVCS)的代表之一,与Git(分布式版本控制系统)不同,SVN的代码库通常存储在一个中央服务器上。SVN的主要特点版本控制:记录文件和目录的每一次更改,支持版本回溯和历史查看。多人协作:允许多
- 【服务器数据恢复】数据中心存储服务器VMware vSAN分布式存储架构数据恢复解析
海境超备
服务器分布式架构网络安全系统安全运维
随着企业数据中心的数据量的不断增加,数据存储和恢复成为了企业必须面对的重要问题。vSAN(VirtualStorageAreaNetwork)分布式存储架构是一种新型的存储技术,它可以有效地解决企业数据存储和管理方面的问题。本文将详细介绍vSAN分布式存储架构的原理和特点,并解析其数据恢复的原理和方法。分布式文件系统(DistributedFileSystem,DFS)是一种能够在多台计算机之间共
- HarmonyOS第27天:鸿蒙开发新征程探索未来,持续进阶
老三不说话、
HarmonyOS开发harmonyos华为
HarmonyOS:开发领域的璀璨新星在万物互联的时代浪潮中,HarmonyOS犹如一颗璀璨的新星,照亮了智能设备的发展道路。作为一款由华为公司开发的面向万物互联时代的全场景分布式操作系统,HarmonyOS自诞生以来,就以其独特的技术架构和卓越的性能表现,吸引了全球开发者的目光。HarmonyOS的分布式架构是其核心优势之一。它将各个终端设备视为一个整体,通过分布式软总线、分布式数据管理等技术,
- Redis: 深入解析高性能内存数据库的实现原理
一休哥助手
数据库数据库redis缓存
一、Redis简介Redis是一种基于内存的键值存储数据库,支持丰富的数据类型,如字符串、列表、集合、有序集合和哈希表。它不仅具有极高的性能,还支持数据持久化、主从复制和分布式架构,使其在各种应用场景中表现出色。1.1Redis的特点高性能:Redis所有操作都在内存中完成,读写速度非常快。丰富的数据类型:支持字符串、列表、集合、有序集合和哈希表等多种数据类型。持久化:支持RDB(RedisDat
- Redis 三主三从集群部署的完整方案
Honmaple
redis数据库缓存
一、架构设计原理分布式数据分片哈希槽机制:RedisCluster将数据划分为16384个槽位,每个主节点负责部分槽位(如主节点1管理槽0-5460,主节点2管理5461-10922等)。自动负载均衡:数据按哈希值分配到不同节点,避免单点性能瓶颈。高可用基础:每个主节点配置至少一个从节点,主节点故障时自动切换从节点接替。故障转移流程哨兵协同:3个哨兵节点通过投票机制(quorum=2)决
- C++,Go 语言开发危险化学品流动跟踪APP
Geeker-2025
c++golang
开发一款危险化学品流动跟踪APP是一个非常重要且复杂的项目,主要用于监控和管理危险化学品的运输、存储和使用过程,确保其符合安全规范,防止泄漏、误用或其他安全事故。该APP需要具备实时跟踪、数据记录、报警机制、权限管理等功能。C++和Go语言的结合在这个项目中可以发挥各自的优势:C++适合高性能计算、底层硬件交互和实时数据处理,而Go语言适合高性能后端服务、并发处理和分布式系统。---##1.**项
- 解析:浏览器事件冒泡及事件捕获
C860
浏览器浏览器
今天的效率有点奇葩,说高吧,一个上午做了不少事。说低吧,因为一个分布式的算法花了我不少时间,终于有点头绪。估计明天会写一篇文章来讲述一下自己的看法。而今天,还是回到前端。今天来说说事件冒泡和事件捕获。首先肯定是概念:什么是事件冒泡?什么是事件捕获?简单地说,事件冒泡和事件捕获都是一种事件传递的机制。这种机制可以使事件在不同级的元素间传递。事件冒泡是从事件触发的源节点,向父节点传递,直到到达最顶节点
- Redis 详解
z小天才b
Redisredis数据库缓存
1.NoSQL的核心概念和应用场景核心概念NoSQL(NotOnlySQL):一类非关系型数据库的统称,专为处理大规模数据存储而设计特点:高扩展性、高性能、灵活的数据模型、分布式架构CAP理论:一致性(Consistency)、可用性(Availability)、分区容错性(Partitiontolerance),NoSQL通常优先保证AP或CP主要类型键值存储:Redis,Memcached文档
- 高性能计算:GPU加速与分布式训练
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍随着人工智能技术的飞速发展,深度学习模型的规模和复杂度不断提升,对计算能力的需求也越来越高。传统的CPU架构已经难以满足深度学习模型训练的需求,因此,GPU加速和分布式训练成为了高性能计算领域的研究热点。1.1.深度学习与计算挑战深度学习模型通常包含数百万甚至数十亿个参数,训练过程需要进行大量的矩阵运算和梯度更新,对计算资源的需求非常高。传统的CPU架构虽然具有较强的通用性,但其并行计
- StarRocks 主键(Primary Key)深度解析
数据库数据分析主键缓存物化视图
一、StarRocks产品简介StarRocks是一款高性能分析型数据库,专为海量数据的实时分析而设计。作为新一代湖仓(Lakehouse)加速引擎,StarRocks融合了MPP架构和列式存储引擎的优势,能够支持亿级数据秒级查询响应。核心特性:全面的数据模型:支持明细模型、主键模型和聚合模型,满足多样化业务场景实时数据分析:提供高效的数据导入与更新能力,支持实时数据处理分布式架构:采用无共享(S
- 【Redis系列】Redis从入门到进阶顶级教程
小夕Coding
大数据系列数据库redisjava缓存分布式
文章目录Redis单机环境搭建(1)下载并解压(2)编译(3)启动服务(4)启动客户端(5)修改访问配置一、概述二、数据类型(1)STRING(2)LIST(3)SET(4)HASH(5)ZSET三、数据结构(1)字典(2)跳跃表四、使用场景(1)计数器(1)缓存(2)查找表(3)消息队列(4)会话缓存(5)分布式锁实现(6)其它五、Redis与Memcached(1)数据类型(2)数据持久化(3
- AI系统API网关原理与代码实战案例讲解
AI大模型应用之禅
DeepSeekR1&AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
AI系统API网关原理与代码实战案例讲解1.背景介绍在现代分布式系统中,API网关作为一个重要的组件,起到了至关重要的作用。它不仅仅是一个简单的请求路由器,更是一个集成了安全、负载均衡、缓存、监控等多种功能的综合性服务。特别是在AI系统中,API网关的作用尤为重要,因为AI系统通常需要处理大量的数据请求,并且需要保证高可用性和高性能。API网关的概念最早出现在微服务架构中,旨在解决微服务之间的通信
- 算力技术演进与多场景融合路径
智能计算研究中心
其他
内容概要算力技术的演进正经历从异构计算到量子计算的范式跃迁。当前技术图谱中,芯片制程突破与架构创新持续推动算力密度提升,如5nm以下先进工艺与存算一体设计显著增强运算单元效率。与此同时,模型压缩、数据预处理等算法优化手段使单位算力产出提高30%以上。典型应用场景中,工业互联网通过自适应计算实现毫秒级实时控制,医疗影像领域借助分布式计算完成TB级数据处理,而智能安防系统依托边缘计算降低端到端时延至5
- 算力融合创新与多场景应用生态构建
智能计算研究中心
其他
内容概要算力作为数字经济的核心驱动力,正经历从单一计算范式向融合架构的跨越式演进。随着异构计算、光子计算等底层技术的突破,算力资源逐步形成跨架构协同、多模态联动的智能供给体系,支撑工业互联网、医疗影像、智能安防等场景实现效率跃升。与此同时,量子计算与神经形态计算的前沿探索,正在重塑科学计算与实时决策的技术边界。建议行业关注算力可扩展性与安全标准的协同设计,通过动态调度算法与分布式架构优化,构建弹性
- Nginx负载均衡
510888780
nginx应用服务器
Nginx负载均衡一些基础知识:
nginx 的 upstream目前支持 4 种方式的分配
1)、轮询(默认)
每个请求按时间顺序逐一分配到不同的后端服务器,如果后端服务器down掉,能自动剔除。
2)、weight
指定轮询几率,weight和访问比率成正比
- RedHat 6.4 安装 rabbitmq
bylijinnan
erlangrabbitmqredhat
在 linux 下安装软件就是折腾,首先是测试机不能上外网要找运维开通,开通后发现测试机的 yum 不能使用于是又要配置 yum 源,最后安装 rabbitmq 时也尝试了两种方法最后才安装成功
机器版本:
[root@redhat1 rabbitmq]# lsb_release
LSB Version: :base-4.0-amd64:base-4.0-noarch:core
- FilenameUtils工具类
eksliang
FilenameUtilscommon-io
转载请出自出处:http://eksliang.iteye.com/blog/2217081 一、概述
这是一个Java操作文件的常用库,是Apache对java的IO包的封装,这里面有两个非常核心的类FilenameUtils跟FileUtils,其中FilenameUtils是对文件名操作的封装;FileUtils是文件封装,开发中对文件的操作,几乎都可以在这个框架里面找到。 非常的好用。
- xml文件解析SAX
不懂事的小屁孩
xml
xml文件解析:xml文件解析有四种方式,
1.DOM生成和解析XML文档(SAX是基于事件流的解析)
2.SAX生成和解析XML文档(基于XML文档树结构的解析)
3.DOM4J生成和解析XML文档
4.JDOM生成和解析XML
本文章用第一种方法进行解析,使用android常用的DefaultHandler
import org.xml.sax.Attributes;
- 通过定时任务执行mysql的定期删除和新建分区,此处是按日分区
酷的飞上天空
mysql
使用python脚本作为命令脚本,linux的定时任务来每天定时执行
#!/usr/bin/python
# -*- coding: utf8 -*-
import pymysql
import datetime
import calendar
#要分区的表
table_name = 'my_table'
#连接数据库的信息
host,user,passwd,db =
- 如何搭建数据湖架构?听听专家的意见
蓝儿唯美
架构
Edo Interactive在几年前遇到一个大问题:公司使用交易数据来帮助零售商和餐馆进行个性化促销,但其数据仓库没有足够时间去处理所有的信用卡和借记卡交易数据
“我们要花费27小时来处理每日的数据量,”Edo主管基础设施和信息系统的高级副总裁Tim Garnto说道:“所以在2013年,我们放弃了现有的基于PostgreSQL的关系型数据库系统,使用了Hadoop集群作为公司的数
- spring学习——控制反转与依赖注入
a-john
spring
控制反转(Inversion of Control,英文缩写为IoC)是一个重要的面向对象编程的法则来削减计算机程序的耦合问题,也是轻量级的Spring框架的核心。 控制反转一般分为两种类型,依赖注入(Dependency Injection,简称DI)和依赖查找(Dependency Lookup)。依赖注入应用比较广泛。
- 用spool+unixshell生成文本文件的方法
aijuans
xshell
例如我们把scott.dept表生成文本文件的语句写成dept.sql,内容如下:
set pages 50000;
set lines 200;
set trims on;
set heading off;
spool /oracle_backup/log/test/dept.lst;
select deptno||','||dname||','||loc
- 1、基础--名词解析(OOA/OOD/OOP)
asia007
学习基础知识
OOA:Object-Oriented Analysis(面向对象分析方法)
是在一个系统的开发过程中进行了系统业务调查以后,按照面向对象的思想来分析问题。OOA与结构化分析有较大的区别。OOA所强调的是在系统调查资料的基础上,针对OO方法所需要的素材进行的归类分析和整理,而不是对管理业务现状和方法的分析。
OOA(面向对象的分析)模型由5个层次(主题层、对象类层、结构层、属性层和服务层)
- 浅谈java转成json编码格式技术
百合不是茶
json编码java转成json编码
json编码;是一个轻量级的数据存储和传输的语言
在java中需要引入json相关的包,引包方式在工程的lib下就可以了
JSON与JAVA数据的转换(JSON 即 JavaScript Object Natation,它是一种轻量级的数据交换格式,非
常适合于服务器与 JavaScript 之间的数据的交
- web.xml之Spring配置(基于Spring+Struts+Ibatis)
bijian1013
javaweb.xmlSSIspring配置
指定Spring配置文件位置
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>
/WEB-INF/spring-dao-bean.xml,/WEB-INF/spring-resources.xml,
/WEB-INF/
- Installing SonarQube(Fail to download libraries from server)
sunjing
InstallSonar
1. Download and unzip the SonarQube distribution
2. Starting the Web Server
The default port is "9000" and the context path is "/". These values can be changed in &l
- 【MongoDB学习笔记十一】Mongo副本集基本的增删查
bit1129
mongodb
一、创建复本集
假设mongod,mongo已经配置在系统路径变量上,启动三个命令行窗口,分别执行如下命令:
mongod --port 27017 --dbpath data1 --replSet rs0
mongod --port 27018 --dbpath data2 --replSet rs0
mongod --port 27019 -
- Anychart图表系列二之执行Flash和HTML5渲染
白糖_
Flash
今天介绍Anychart的Flash和HTML5渲染功能
HTML5
Anychart从6.0第一个版本起,已经逐渐开始支持各种图的HTML5渲染效果了,也就是说即使你没有安装Flash插件,只要浏览器支持HTML5,也能看到Anychart的图形(不过这些是需要做一些配置的)。
这里要提醒下大家,Anychart6.0版本对HTML5的支持还不算很成熟,目前还处于
- Laravel版本更新异常4.2.8-> 4.2.9 Declaration of ... CompilerEngine ... should be compa
bozch
laravel
昨天在为了把laravel升级到最新的版本,突然之间就出现了如下错误:
ErrorException thrown with message "Declaration of Illuminate\View\Engines\CompilerEngine::handleViewException() should be compatible with Illuminate\View\Eng
- 编程之美-NIM游戏分析-石头总数为奇数时如何保证先动手者必胜
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class Nim {
/**编程之美 NIM游戏分析
问题:
有N块石头和两个玩家A和B,玩家A先将石头随机分成若干堆,然后按照BABA...的顺序不断轮流取石头,
能将剩下的石头一次取光的玩家获胜,每次取石头时,每个玩家只能从若干堆石头中任选一堆,
- lunce创建索引及简单查询
chengxuyuancsdn
查询创建索引lunce
import java.io.File;
import java.io.IOException;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.Docume
- [IT与投资]坚持独立自主的研究核心技术
comsci
it
和别人合作开发某项产品....如果互相之间的技术水平不同,那么这种合作很难进行,一般都会成为强者控制弱者的方法和手段.....
所以弱者,在遇到技术难题的时候,最好不要一开始就去寻求强者的帮助,因为在我们这颗星球上,生物都有一种控制其
- flashback transaction闪回事务查询
daizj
oraclesql闪回事务
闪回事务查询有别于闪回查询的特点有以下3个:
(1)其正常工作不但需要利用撤销数据,还需要事先启用最小补充日志。
(2)返回的结果不是以前的“旧”数据,而是能够将当前数据修改为以前的样子的撤销SQL(Undo SQL)语句。
(3)集中地在名为flashback_transaction_query表上查询,而不是在各个表上通过“as of”或“vers
- Java I/O之FilenameFilter类列举出指定路径下某个扩展名的文件
游其是你
FilenameFilter
这是一个FilenameFilter类用法的例子,实现的列举出“c:\\folder“路径下所有以“.jpg”扩展名的文件。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
- C语言学习五函数,函数的前置声明以及如何在软件开发中合理的设计函数来解决实际问题
dcj3sjt126com
c
# include <stdio.h>
int f(void) //括号中的void表示该函数不能接受数据,int表示返回的类型为int类型
{
return 10; //向主调函数返回10
}
void g(void) //函数名前面的void表示该函数没有返回值
{
//return 10; //error 与第8行行首的void相矛盾
}
in
- 今天在测试环境使用yum安装,遇到一个问题: Error: Cannot retrieve metalink for repository: epel. Pl
dcj3sjt126com
centos
今天在测试环境使用yum安装,遇到一个问题:
Error: Cannot retrieve metalink for repository: epel. Please verify its path and try again
处理很简单,修改文件“/etc/yum.repos.d/epel.repo”, 将baseurl的注释取消, mirrorlist注释掉。即可。
&n
- 单例模式
shuizhaosi888
单例模式
单例模式 懒汉式
public class RunMain {
/**
* 私有构造
*/
private RunMain() {
}
/**
* 内部类,用于占位,只有
*/
private static class SingletonRunMain {
priv
- Spring Security(09)——Filter
234390216
Spring Security
Filter
目录
1.1 Filter顺序
1.2 添加Filter到FilterChain
1.3 DelegatingFilterProxy
1.4 FilterChainProxy
1.5
- 公司项目NODEJS实践0.1
逐行分析JS源代码
mongodbnginxubuntunodejs
一、前言
前端如何独立用nodeJs实现一个简单的注册、登录功能,是不是只用nodejs+sql就可以了?其实是可以实现,但离实际应用还有距离,那要怎么做才是实际可用的。
网上有很多nod
- java.lang.Math
liuhaibo_ljf
javaMathlang
System.out.println(Math.PI);
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1));
System.out.println(Math.abs(111111111));
System.out.println(Mat
- linux下时间同步
nonobaba
ntp
今天在linux下做hbase集群的时候,发现hmaster启动成功了,但是用hbase命令进入shell的时候报了一个错误 PleaseHoldException: Master is initializing,查看了日志,大致意思是说master和slave时间不同步,没办法,只好找一种手动同步一下,后来发现一共部署了10来台机器,手动同步偏差又比较大,所以还是从网上找现成的解决方
- ZooKeeper3.4.6的集群部署
roadrunners
zookeeper集群部署
ZooKeeper是Apache的一个开源项目,在分布式服务中应用比较广泛。它主要用来解决分布式应用中经常遇到的一些数据管理问题,如:统一命名服务、状态同步、集群管理、配置文件管理、同步锁、队列等。这里主要讲集群中ZooKeeper的部署。
1、准备工作
我们准备3台机器做ZooKeeper集群,分别在3台机器上创建ZooKeeper需要的目录。
数据存储目录
- Java高效读取大文件
tomcat_oracle
java
读取文件行的标准方式是在内存中读取,Guava 和Apache Commons IO都提供了如下所示快速读取文件行的方法: Files.readLines(new File(path), Charsets.UTF_8); FileUtils.readLines(new File(path)); 这种方法带来的问题是文件的所有行都被存放在内存中,当文件足够大时很快就会导致
- 微信支付api返回的xml转换为Map的方法
xu3508620
xmlmap微信api
举例如下:
<xml>
<return_code><![CDATA[SUCCESS]]></return_code>
<return_msg><![CDATA[OK]]></return_msg>
<appid><