ggplot2-一页多图(不同来源, 灵活绘制)

本文更新地址:http://blog.csdn.net/tanzuozhev

本文在 http://www.cookbook-r.com/Graphs/Multiple_graphs_on_one_page_(ggplot2)/ 的基础上加入了自己的理解

ggplot2 的分面(facet)可以绘制一页多图, 但是必须是来自同一个数据集的图形,局限性很大. 如果我们有多个不同来源的图形,想绘制到一张图上又该如何处理呢? multiplot提供了极为强大的函数功能.

multiplot可以设置行列, 也可以设置一个矩阵进行布局.

# Multiple plot function
#
# ggplot objects can be passed in ..., or to plotlist (as a list of ggplot objects)
# - cols:   Number of columns in layout
# - layout: A matrix specifying the layout. If present, 'cols' is ignored.
#
# If the layout is something like matrix(c(1,2,3,3), nrow=2, byrow=TRUE),
# then plot 1 will go in the upper left, 2 will go in the upper right, and
# 3 will go all the way across the bottom.
#
multiplot <- function(..., plotlist=NULL, file, cols=1, layout=NULL) {
  library(grid)

  # Make a list from the ... arguments and plotlist
  plots <- c(list(...), plotlist)

  numPlots = length(plots)

  # If layout is NULL, then use 'cols' to determine layout
  if (is.null(layout)) {
    # Make the panel
    # ncol: Number of columns of plots
    # nrow: Number of rows needed, calculated from # of cols
    layout <- matrix(seq(1, cols * ceiling(numPlots/cols)),
                    ncol = cols, nrow = ceiling(numPlots/cols))
  }

 if (numPlots==1) {
    print(plots[[1]])

  } else {
    # Set up the page
    grid.newpage()
    pushViewport(viewport(layout = grid.layout(nrow(layout), ncol(layout))))

    # Make each plot, in the correct location
    for (i in 1:numPlots) {
      # Get the i,j matrix positions of the regions that contain this subplot
      matchidx <- as.data.frame(which(layout == i, arr.ind = TRUE))

      print(plots[[i]], vp = viewport(layout.pos.row = matchidx$row,
                                      layout.pos.col = matchidx$col))
    }
  }
}

范例

library(ggplot2)

# This example uses the ChickWeight dataset, which comes with ggplot2
# 图1
p1 <- ggplot(ChickWeight, aes(x=Time, y=weight, colour=Diet, group=Chick)) +
    geom_line() +
    ggtitle("Growth curve for individual chicks")
p1

# 图2
p2 <- ggplot(ChickWeight, aes(x=Time, y=weight, colour=Diet)) +
    geom_point(alpha=.3) +
    geom_smooth(alpha=.2, size=1) +
    ggtitle("Fitted growth curve per diet")
p2
## geom_smooth: method="auto" and size of largest group is <1000, so using loess. Use 'method = x' to change the smoothing method.

# 图3
p3 <- ggplot(subset(ChickWeight, Time==21), aes(x=weight, colour=Diet)) +
    geom_density() +
    ggtitle("Final weight, by diet")
p3

# 图4
p4 <- ggplot(subset(ChickWeight, Time==21), aes(x=weight, fill=Diet)) +
    geom_histogram(colour="black", binwidth=50) +
    facet_grid(Diet ~ .) +
    ggtitle("Final weight, by diet") +
    theme(legend.position="none")        # No legend (redundant in this graph)   
p4

合并为一张图

multiplot(p1, p2, p3, p4, cols=2)
## geom_smooth: method="auto" and size of largest group is <1000, so using loess. Use 'method = x' to change the smoothing method.

你可能感兴趣的:(R语言,R语言与数据可视化,R语言,ggplot2,一页多图)