无论你是产品人还是运营人,只要与业务相关、与产品相关,你就少不了和数据分析打交道。一套优良的数据分析方法能够高效解决很多问题,并在产品决策/产品运营遇到瓶颈时提供优秀的解决方案。
数据分析方法已经不是数据分析师的专属了,更不是数据挖掘工程师独享的方法,几乎每一个与业务和产品相关的岗位都需要数据分析方法。一套体系化的数据分析方法论帮助你去伪存真,无限缩短你与正确答案的距离。
在数据分析上,有的公司自建BI,有的公司使用第三方BI,鉴于系统保密的原则,本文案例的BI案例均来自友盟+移动统计(U-App),希望本文能带给大家数据分析方面的思悟。
为什么要拥有数据分析能力
我爬了某招聘网站的数据发现,招聘名字带“数据分析”的岗位仍有8000多个,从实习生到高级管理岗位都有较多需求。也就是说,有一定数据分析能力的人在找工作时的优势十分明显,岗位薪资均值也高于其他职能类岗位。
所以,掌握数据分析能力可以加薪是必然的,这也是为什么要学数据分析的原因。
如果大家看过相关数据课程或者文章,一定了解过各类分析方法,大学的数据分析课程也会介绍很多数据分析方法。你学了一遍又一遍,笔记记了一遍又一遍,但是在最后遇到问题时,仍然不知道该如何下手。
所以要打破常规的数据分析思维,在基础理论之上建立自己的数据分析思维。
从思维能力上看,我认为数据分析能力的提升要遵从这3个原则:
第一,要深度理解业务。不理解业务的分析结论不具有任何参考或者指导意义。所谓理解业务就是要学会拆解业务,用指标衡量业务的发展趋势。
第二,拆解业务后,要基于业务指标建立分析框架,并且基于当前业务状态和目标找到可衡量的关键性指标。
第三,用数据量化指标,把指标公式化,最佳的状态是每一个指标背后的数据都是最小维度且量化的。
例如以电商店铺的当日销售额为例:
销售额=店铺客单价*付费客户数=客单价*支付人数*支付成功率
支付人数=浏览人数*下单率
浏览人数=商品曝光次数*曝光转化率
所以理论上,在店铺客单价不变的情况下,可以通过提升各个步骤的转化率,以及商品曝光机会来最终提升店铺当日的销售额。
对应的策略可以是加大广告投放量,优化商品详情页,以及下单支付时的各项优惠刺激,去提升曝光量和转化率。
所以,指标公式化量化,就是把它拆解到最小不可分割的、可量化的数据指标。这一系列拆解背后是对业务关系和流程的理解,如果不理解业务,根本找不到其中指标之间的相关关系。
完成基础拆解后,就是根据目标去找到那些能影响目标的最小可量化的数据指标,加上时间、地区等维度对比分析,找出曾经策略的优劣点,优化策略继续战斗。
发挥数据分析能力之前,首先要熟悉自己使用的数据查询分析系统,也就是BI(商业智能)系统。
如果你还没有使用过BI系统,可以使用第三方的工具,简单易上手。比如友盟+提供的U-App。
如何利用数据分析能力制定产品和运营策略?
4.1 产品策略
这里说的产品策略分为两类:
一种是基于用户型App的更新迭代,比如抖音近一年更新42次是如何获得数据支持的;另一种是业务型产品的定价、推陈出新等,比如网贷理财产品的定价。
以抖音为例,我注意到抖音近1年更新42次,上一次更新是9天内,基本上是一周多就更新一次,如何利用BI数据来支持产品的迭代方向呢?
整理抖音近期的更新日志会发现,抖音近期关于“道具玩法”的更新非常多。
那这里我们抛出一个问题:迭代多种新奇好玩的道具玩法能否提升产品的活跃指标呢?
从我观察到的现象来说,抖音有很多平时不发作品的用户,也会尝试道具玩法来增加乐趣。发作品的用户凭借道具玩法就能创造出眼前一亮的短视频,这个功能可以说持续吸引各层级的用户,理应可以增加抖音产品的活跃度。
除了从产品逻辑上推断,如果要从BI数据验证功能逻辑成立,我们需要什么数据呢?数据之间可以证明些什么呢?
抖音道具是一种发布作品时的效果加成,如果你没有作品创意,不知道要发什么,参与道具话题,使用道具的特效加成制作作品也是很好的选择。
(抖音道具玩法常规流程)
我作为外部用户,基于业务我分析出抖音道具功能涉及到的数据指标。
如下图所示:
(抖音道具玩法指标模型)
我认为抖音道具玩法功能的价值点在于贡献更多内容,提升产品作品的受欢迎程度,间接提升了抖音整体的活跃度。
从道具玩法的贡献度和受欢迎程度两个指标继续拆解,我认为:
道具玩法作品贡献度=道具作品量/平台作品总量
道具玩法受欢迎程度=道具玩法作品的推荐转化率*权重1+点赞率*权重2+评论率*权重3
其中三者的权重之和为1,比如推荐转化率占40%,点赞率占30%,评论率占30%,权重的大小分配也是基于对业务的理解程度而定,可以不断调整。当然也可以有意识的调整使其成为了一个好看的数字,体现业务的增长性。
分析完单一功能,继续把视线拉回到抖音产品本身来,道具玩法到底能否提升产品整体的活跃度呢?
先拆解抖音活跃度这个指标,抖音是一款体量非常大的产品,我把用户活跃义为“使用产品各项功能”,使用时间越长、频次越高,则代表用户越活跃。
基于对活跃的定义,用公式化的思维拆解活跃度就是:
功能活跃度P=使用功能时长T*使用频次N
产品活跃度=P1*权重1+P2*权重2+P3*权重3+P4*权重4……..
产品整体的活跃度的衡量即是产品内各个功能的活跃度之和。由于每一个功能对于产品本身的作用是不同的,所以要添加权重;像看视频、对作品进行互动等这类核心功能权重就高,而像资料设置这类功能权重就低一些。
要想衡量产品活跃度是否提升,就得落实到具体数据上,需要看产品功能的使用总时长和总频率是否增加,验证之前的推测逻辑是否正确。对于抖音道具玩法功能来说,它可能就是公式中的功能3,它的使用时长和频率就影响着产品的整体活跃度,也对产品作品数量,产品社区氛围有一定的影响。
既然找到了关键性指标是道具玩法的使用时长和频率,也确定它们是可衡量化的数据,所以可以通过BI来展示跟踪,比如U-App 里就有该模块,可以统计时长和频率。
(U-App DEMO,不具有现实数据意义)
利用BI统计的数据趋势就可以验证产品的活跃度是否增加了,还能知道用户在产品内的路径,更清晰地了解用户使用道具功能后是否发布作品,用户查看作品时是否点击“道具主题”关键词进入主题页,从而停留时长更长,活跃度更高。
运营策略所面向的产品,通常也是有用户型和业务型。通常被熟知的都是用户型产品,判断标准是用户使用产品本身是不需要付费的,产品需要先做大用户,然后再从其他方面获得收益,所以用户型产品的利润通常是“羊毛出在猪身上”。
而业务型产品就不一样了,和传统行业一样,使用产品就需要付费。典型的有自营理财类产品,在于从业务本身要有利率差可以赚,如果利率差不高于业务运营所需成本,用户越多亏损越严重,业务型产品的羊毛必须要从羊身上薅出来。
不论是哪种类型的产品都需要数据驱动,做任何决策需要数据支持,绝不能一拍脑门就决定行动目标和方向。
数据是非常宝贵的,任何一家不注重数据保护和挖掘利用的公司都难以生存。在解决工作中大大小小的问题时,数据是最直观最重要的依据。
想要做好数据分析,要从3个方面入手:
第一,掌握数据分析方法,其中包括工具方法和分析思维。
第二,深度理解业务逻辑,了解数据与数据、指标与指标之间的相关关系。
第三,换位思考,站在需求方的角度去做分析,去解决实际问题。不要沉浸于分析成果中,再漂亮的分析报告如果不能支持业务,不能作为做决策的依据,那它就是无用的。
总结
本文阐述了笔者对数据分析的认知,抛出了数据分析三原理。
数据分析是一件说大也大,说小也可以小,本文的内容难以详尽这个领域,只希冀其中写到的数据分析思维和小案例能帮到你做一个合适的策略。
说明:文章中的部分数据为脱敏数据或DEMO数据,不具备真实运营参考价值。
本内容来源于友盟+数据大赛,作者:王亮,人人都是产品经理专栏作家。多行业跨界撰稿人,关注新产品新营销,用产品思维书写互联网运营的细节和本质。