- 蚂蚁集团可转正实习算法岗内推-自然语言
飞300
业界资讯自然语言处理
具备极佳的工程实现能力,精通C/C++、Java、Pvthon、Perl等至少一门语言:对目前主流的深度学习平台:tensorflow、pytorch、mxnet等,至少对其中一个有上手经验;熟悉深度学习以及常见机器学习算法的原理与算法,能熟练运用聚类、分类、回归、排序等模型解决有挑战性的问题,有大数据处理的实战经验;有强烈求知欲,对人工智能领域相关技术有热情,内推链接:https://u.ali
- 深圳传音控股AI算法岗内推
飞300
人工智能pythonjava业界资讯
1扎实的数学基础,熟练掌握机器学习相关的数学知识。2熟悉常用的机器学习算法,掌握常用的深度学习模型与编程实践。3熟悉Pytorch或TensorFlow等深度学习框架,有一定项目经验。4良好的沟通协调能力,执着的专业精神。5参与部门AI创新项目,包括自动化测试平台、BPM流程管理等项目开发登录链接:transsion.zhiye.com/campus/jobs填写我的推荐码:EVHPB3投递,简历
- 神经网络VS决策树
Persistence is gold
神经网络决策树人工智能
神经网络(NeuralNetworks)和决策树(DecisionTrees)是两种不同的机器学习算法,各自具有独特的优点和适用场景。以下是它们的详细比较:神经网络优点:强大的学习能力:神经网络,尤其是深度神经网络,能够自动学习数据中的复杂特征,可以处理高维和非线性的问题。适用性广泛:神经网络适用于分类、回归、图像处理、语音识别、自然语言处理等多种任务。多层结构:通过增加隐藏层,神经网络可以逐层提
- 深度神经网络——决策树的实现与剪枝
知来者逆
人工智能dnn决策树人工智能神经网络深度学习机器学习
概述决策树是一种有用的机器学习算法,用于回归和分类任务。“决策树”这个名字来源于这样一个事实:算法不断地将数据集划分为越来越小的部分,直到数据被划分为单个实例,然后对实例进行分类。如果您要可视化算法的结果,类别的划分方式将类似于一棵树和许多叶子。这是决策树的快速定义,但让我们深入了解决策树的工作原理。更好地了解决策树的运作方式及其用例,将帮助您了解何时在机器学习项目中使用它们。决策树的结构决策树的
- 基于hive的电信离线用户的行为分析系统
赵谨言
论文经验分享毕业设计
标题:基于hive的电信离线用户的行为分析系统内容:1.摘要随着电信行业的快速发展,用户行为数据呈现出海量、复杂的特点。为了深入了解用户行为模式,提升电信服务质量和精准营销能力,本研究旨在构建基于Hive的电信离线用户行为分析系统。通过收集电信用户的通话记录、上网行为、短信使用等多源数据,利用Hive数据仓库工具进行数据存储和处理,采用数据挖掘和机器学习算法对用户行为进行分析。实验结果表明,该系统
- 机器学习校招面经二
Y1nhl
搜广推面经机器学习人工智能算法推荐算法数据挖掘搜索算法pytorch
快手机器学习算法一、AUC(AreaUndertheROCCurve)怎么计算?AUC接近1可能的原因是什么?见【搜广推校招面经四】AUC是评估分类模型性能的重要指标,用于衡量模型在不同阈值下区分正负样本的能力。它是ROC曲线(ReceiverOperatingCharacteristicCurve)下的面积。1.1.ROC曲线的坐标ROC曲线以真正例率(TruePositiveRate,TPR)
- 顺丰科技-2024 机器学习算法 面经
程序员奇奇
offer分享+面试经验顺丰科技机器学习机器学习算法面经
专栏分享:计算机小伙伴秋招春招找工作的面试经验和面试的详情知识点专栏首页:软件测试开发类面经合集主要分享:测试开发类岗位在面试互联网公司时候一些真实的经验面试code学习参考请看:数据结构面试必刷100题一面:1.自我介绍2.线程和进程的区别,什么时候用多进程,什么时候用多线程(这个属于给自挖坑了)3.实习项目问题,项目目标是怎么定的,用的什么算法
- 基于 Python + Django 的学生成绩综合评价分析预测可视化系统
源码空间站11
pythondjango开发语言课程设计机器学习成绩预测毕业设计
开发报告:一、项目概述本项目是一个基于Python和Django框架开发的学生成绩综合评价分析与预测可视化系统。系统的主要功能包括:学生成绩数据的管理与展示、成绩预测模型的建立与应用、以及预测结果的可视化展示。该系统利用机器学习算法(如线性回归)进行成绩预测,并通过DjangoWeb框架实现数据的展示和用户交互。二、系统功能概述学生信息管理:系统管理学生的基本信息,包括年龄、性别、爱好等,基于Dj
- AI辅助的企业估值报告生成器
AI智能涌现深度研究
DeepSeekR1&大数据AI人工智能人工智能ai
AI辅助的企业估值报告生成器关键词AI辅助估值企业估值报告数据处理机器学习算法报告生成器摘要本文将探讨如何利用人工智能技术辅助企业估值报告的生成。通过分析估值报告的重要性、AI技术在估值报告中的应用场景、估值模型与数据处理方法,以及机器学习算法在估值中的应用,本文旨在为企业和投资者提供一个高效、准确、可视化的估值报告生成解决方案。同时,本文还将介绍一个估值报告生成器的实现过程,并通过实际案例进行分
- 大模型推理速度测评的实战代码
herosunly
大模型推理速度人工智能实战代码
大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法行业就业。希望和大家一起成长进步。 今天给大家带来的文章是大模型推理速度测评的实战代码,希望能对学习大模型的同学们有所帮助
- 深入探索Python机器学习算法:模型评估
数据攻城小狮子
Python机器学习python机器学习算法sklearn人工智能
深入探索Python机器学习算法:模型评估文章目录深入探索Python机器学习算法:模型评估模型评估1.数据集划分1.1划分原则和方法1.2交叉验证技术1.3不同数据集划分方法的适用性2.评估指标分析2.1分类任务评估指标2.2回归任务评估指标2.3不同评估指标的选择和比较3.模型评估的注意事项3.1避免数据泄露问题3.2评估指标的稳定性和可靠性模型评估1.数据集划分1.1划分原则和方法在机器学习
- 聚类分析tensorflow实例_新手必看的机器学习算法集锦(聚类篇)
道酝欣赏
继上一篇《机器学习算法之分类》中大致梳理了一遍在机器学习中常用的分类算法,类似的,这一姊妹篇中将会梳理一遍机器学习中的聚类算法,最后也会拓展一些其他无监督学习的方法供了解学习。1.机器学习机器学习是近20多年兴起的一门多领域交叉学科,它涉及到概率论、统计学、计算机科学以及软件工程等多门学科。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。机器学习算法是一类能从数据中自动分析获得规律
- 深入解析Python机器学习库Scikit-Learn的应用实例
caihuayuan5
面试题汇总与解析springbootjava后端大数据课程设计
深入解析Python机器学习库Scikit-Learn的应用实例随着人工智能和数据科学领域的迅速发展,机器学习成为了当下最炙手可热的技术之一。而在机器学习领域,Python作为一种功能强大且易于上手的编程语言,拥有庞大的生态系统和丰富的机器学习库。其中,Scikit-Learn作为Python中一个重要的机器学习库,包含了许多常用的机器学习算法和工具,可用于数据挖掘、数据分析和预测建模等应用场景。
- 编程小白冲Kaggle每日打卡(17)--kaggle学堂:<机器学习简介>随机森林
AZmax01
编程小白冲Kaggle每日打卡机器学习随机森林人工智能
Kaggle官方课程链接:RandomForests本专栏旨在Kaggle官方课程的汉化,让大家更方便地看懂。RandomForests使用更复杂的机器学习算法。介绍决策树给你留下了一个艰难的决定。一棵有很多叶子的深树会被过度拟合,因为每一个预测都来自它叶子上少数房子的历史数据。但是,叶子很少的浅树表现不佳,因为它无法在原始数据中捕捉到尽可能多的区别。即使是当今最复杂的建模技术也面临着欠拟合和过拟
- 数据挖掘实习面经一
Y1nhl
搜广推面经数据挖掘人工智能机器学习推荐算法python风控算法搜索引擎
写在前面:其实数据挖掘、风控、机器学习算法与搜广推的八股还是有重合的部分,毕竟都是面对结构化数据。特别是我自己是做竞赛的,平时LGBM、CatBoost用的挺多的,所以感觉这些八股还是有必要看看,建议大家也可以看一下。京东数据挖掘算法一、介绍贝叶斯优化的原理贝叶斯优化(BayesianOptimization)是一种用于优化黑盒函数的有效方法,特别适用于目标函数评估成本较高、不可导或难以解析表达的
- 基于RF随机森林机器学习算法的回归预测模型MATLAB代码实现了一个回归任务的决策树集成模型。
qq924711725
仿真模型机器学习算法随机森林
基于RF随机森林机器学习算法的回归预测模型MATLAB代码实现了一个回归任务的决策树集成模型。首先从Excel文件中导入数据集,并将数据划分为训练集和测试集。然后,对数据进行归一化处理并转置以适应模型的要求。文章目录MATLAB代码实现说明:MATLAB代码实现说明:运行代码前的注意事项:示例输出:MATLAB代码实现说明:示例输出:以下是一个基于随机森林(RF,RandomForest)机器学习
- .net机器学习框架:ML.NET模型生成器
NotOnlyCoding
AI编程
ML.NETModelBuilder是一个直观的图形化VisualStudio扩展,用于构建、训练和部署自定义机器学习模型。它利用自动化机器学习(AutoML)来探索不同的机器学习算法和设置,帮助您找到最适合您场景的那个。使用ModelBuilder不需要机器学习专业知识。您只需要一些数据和一个需要解决的问题。ModelBuilder会生成代码,以便将模型添加到您的.NET应用程序中。1.创建一个
- 支持向量机(Support Vector Machine,SVM)详细解释(带示例)
浪九天
人工智能理论支持向量机算法机器学习
目录基本概念线性可分情况线性不可分情况工作原理示例Python案例代码解释基本概念支持向量机是一种有监督的机器学习算法,可用于分类和回归任务。在分类问题中,SVM的目标是找到一个最优的超平面,将不同类别的样本分隔开来,并且使得两类样本到该超平面的间隔最大。这个超平面被称为最大间隔超平面,而那些离超平面最近的样本点被称为支持向量,它们决定了超平面的位置和方向。线性可分情况当数据是线性可分的,即存在一
- 电竞赛事数据分析:LNG vs BLG的胜利背后
烧瓶里的西瓜皮
python自动驾驶人工智能数据可视化机器学习
电竞赛事数据分析:LNGvsBLG的胜利背后摘要在S14瑞士轮次日,LNG以1:0战胜BLG,取得了开赛二连胜。本文将通过Python进行数据处理与分析,结合机器学习算法预测比赛结果,并使用数据可视化工具展示关键指标。通过对这场比赛的数据深入挖掘,揭示LNG获胜的关键因素。引言电子竞技(Esports)已经成为全球范围内的一项重要娱乐活动,而《英雄联盟》(LeagueofLegends,LoL)作
- 使用Hugging Face Text Embeddings Inference进行文本嵌入推理
dgay_hua
python
在自然语言处理中,文本嵌入是一个重要的技术,它将文本转换为可以由机器学习算法处理的数字向量。在这篇文章中,我们将探讨如何使用HuggingFace的TextEmbeddingsInference(TEI)工具包来部署和服务开源文本嵌入和序列分类模型。TEI支持高性能提取,包括常用的嵌入模型如FlagEmbedding、Ember、GTE和E5。技术背景介绍文本嵌入在现代NLP任务中起着关键作用,它
- AI探索笔记:浅谈人工智能算法分类
安意诚Matrix
机器学习笔记人工智能笔记
人工智能算法分类这是一张经典的图片,基本概况了人工智能算法的现状。这张图片通过三个同心圆展示了人工智能、机器学习和深度学习之间的包含关系,其中人工智能是最广泛的范畴,机器学习是其子集,专注于数据驱动的算法改进,而深度学习则是机器学习中利用多层神经网络进行学习的特定方法。但是随着时代的发展,这张图片表达得也不是太全面了。我更喜欢把人工智能算法做如下的分类:传统机器学习算法-线性回归、逻辑回归、支持向
- 【人工智能算法】人工智能算法都包括什么?请详细列出和解释
资源存储库
算法强化学习人工智能算法
目录人工智能算法都包括什么?请详细列出和解释1.机器学习算法(MachineLearningAlgorithms)监督学习算法(SupervisedLearning)无监督学习算法(UnsupervisedLearning)强化学习算法(ReinforcementLearning)2.进化算法(EvolutionaryAlgorithms)3.模拟退火(SimulatedAnnealing)4.粒
- KNN 算法性能跃升秘籍:优化实战,打造高效分类利器!
清水白石008
开发语言学习笔记人工智能算法分类机器学习
KNN算法性能跃升秘籍:优化实战,打造高效分类利器!今天,我想和大家深入探讨一种经典而实用的机器学习算法——K近邻(K-NearestNeighbors,KNN)。KNN算法以其原理简单、易于实现、无需显式训练等特点,在模式识别、分类、回归等领域得到了广泛应用。然而,正如任何算法一样,基础的KNN算法也存在着性能瓶颈,尤其是在处理大规模数据集和高维度特征时,其计算效率和预测精度都可能受到挑战。你是
- 智能算法的全面应用:量子计算与自动化学习在各行业的创新路径探索
智能计算研究中心
其他
内容概要在现代社会,智能算法的应用逐渐渗透到各个行业,成为推动科技进步的重要力量。自动化机器学习算法通过简化模型训练和调优的过程,为数据科学家节省了大量时间。可解释性算法则旨在让模型的决策过程更加透明,从而提高用户对算法决策的信任。此外,量子算法以其独特的计算能力,展现出在处理复杂问题时潜在的优势。金融风控领域通过运用金融风险预测模型,不仅提高了风险管理效率,还提升了预警能力。医疗影像分析则借助卷
- 深度、机器学习算法
yzx991013
机器学习算法人工智能
机器学习典型算法SVM(支持向量机):它通过寻找一个最优超平面来对数据进行分类。在二分类问题中,能找到一个平面(低维)或超平面(高维),使不同类别的数据点尽可能远地分布在超平面两侧。在小样本、非线性数据处理上有优势,常用于文本分类、图像识别等领域。决策树:以树形结构展示决策过程,从根节点开始,依据特征值逐步向下划分,直到叶子节点得出分类或回归结果。它易于理解和解释,可处理数值型和分类型数据,但容易
- 深度学习笔记线性代数方面,记录一些每日学习到的知识
肆——
人工智能深度学习python
记录一些每日学习到的新知识:torch:Torch是一个有大量机器学习算法支持的科学计算框架,是一个与Numpy类似的张量(Tensor)操作库jupyter:JupyterNotebook的本质是一个Web应用程序,便于创建和共享程序文档,支持实时代码,数学方程,可视化和markdown。用途包括:数据清理和转换,数值模拟,统计建模,机器学习等等。只有一个轴的张量,形状只有一个元素torch.a
- 时序大模型:技术需求、现有成果及主流模型、模型架构、数据处理方式、优势、缺点及未来展望
xl.liu
架构人工智能
时序大模型:技术需求、现有成果及主流模型、模型架构、数据处理方式、优势、缺点及未来展望时序大模型如何保证数据的完整性和准确性时序大模型的性能高度依赖于数据的质量和完整性。为了确保模型的预测和分析结果准确可靠,需要采取一系列措施来保证数据的完整性和准确性。数据清洗:去除异常值:通过统计方法或机器学习算法检测并去除异常值,确保数据的合理性。填补缺失值:使用插值方法、均值填充、中位数填充或基于模型的预测
- SVM(支持向量机)原理及数学推导全过程详解
子木呀
支持向量机人工智能分类算法SVM
由于格式问题,为方便阅读,请点击下方链接访问原文点击此处访问原文点击此处访问原文点击此处访问原文点击此处访问原文关于SVM网上已经有很多很多的前辈有过讲解,这两天自己在网上看了看资料,结合前辈们的文章对SVM进行了一个整理,把看的过程中产生的一些问题也进行了解答。本来想着总结得简洁明了又易懂,但SVM本就有严格的数学理论支撑,不像其他机器学习算法是一个黑箱,写完发现要尽量让小白也懂少不了具体的论述
- 【机器学习算法选型:分类与回归】 常见分类算法介绍
云博士的AI课堂
哈佛博后带你玩转机器学习机器学习分类回归分类与回归机器学习算法选型深度学习人工智能
第2节:常见分类算法介绍在机器学习中,分类算法是用于预测一个样本所属类别的工具。无论是在金融风控、医疗诊断、图像识别还是推荐系统等领域,分类算法都扮演着至关重要的角色。不同的分类算法各自有不同的优缺点和应用场景,因此了解这些算法的特点及其适用条件,是构建高效分类模型的关键。1.逻辑回归(LogisticRegression)介绍逻辑回归是一种广泛应用于二分类问题的线性模型,其目标是根据输入特征预测
- 使用Scikit-Learn决策树:分类问题解决方案指南
范范0825
scikit-learn决策树分类
如何用scikit-learn的决策树分类器解决分类问题1.引言在本教程中,我们将探讨如何使用scikit-learn(sklearn)库中的决策树分类器解决分类问题。决策树是一种强大的机器学习算法,能够根据输入数据的特征属性学习决策规则,并用于预测新数据的分类标签。2.理论基础与算法介绍2.1决策树算法概述决策树是一种树形结构,每个非叶节点表示一个特征属性上的决策,每个分支代表一个决策结果的可能
- 深入浅出Java Annotation(元注解和自定义注解)
Josh_Persistence
Java Annotation元注解自定义注解
一、基本概述
Annontation是Java5开始引入的新特征。中文名称一般叫注解。它提供了一种安全的类似注释的机制,用来将任何的信息或元数据(metadata)与程序元素(类、方法、成员变量等)进行关联。
更通俗的意思是为程序的元素(类、方法、成员变量)加上更直观更明了的说明,这些说明信息是与程序的业务逻辑无关,并且是供指定的工具或
- mysql优化特定类型的查询
annan211
java工作mysql
本节所介绍的查询优化的技巧都是和特定版本相关的,所以对于未来mysql的版本未必适用。
1 优化count查询
对于count这个函数的网上的大部分资料都是错误的或者是理解的都是一知半解的。在做优化之前我们先来看看
真正的count()函数的作用到底是什么。
count()是一个特殊的函数,有两种非常不同的作用,他可以统计某个列值的数量,也可以统计行数。
在统
- MAC下安装多版本JDK和切换几种方式
棋子chessman
jdk
环境:
MAC AIR,OS X 10.10,64位
历史:
过去 Mac 上的 Java 都是由 Apple 自己提供,只支持到 Java 6,并且OS X 10.7 开始系统并不自带(而是可选安装)(原自带的是1.6)。
后来 Apple 加入 OpenJDK 继续支持 Java 6,而 Java 7 将由 Oracle 负责提供。
在终端中输入jav
- javaScript (1)
Array_06
JavaScriptjava浏览器
JavaScript
1、运算符
运算符就是完成操作的一系列符号,它有七类: 赋值运算符(=,+=,-=,*=,/=,%=,<<=,>>=,|=,&=)、算术运算符(+,-,*,/,++,--,%)、比较运算符(>,<,<=,>=,==,===,!=,!==)、逻辑运算符(||,&&,!)、条件运算(?:)、位
- 国内顶级代码分享网站
袁潇含
javajdkoracle.netPHP
现在国内很多开源网站感觉都是为了利益而做的
当然利益是肯定的,否则谁也不会免费的去做网站
&
- Elasticsearch、MongoDB和Hadoop比较
随意而生
mongodbhadoop搜索引擎
IT界在过去几年中出现了一个有趣的现象。很多新的技术出现并立即拥抱了“大数据”。稍微老一点的技术也会将大数据添进自己的特性,避免落大部队太远,我们看到了不同技术之间的边际的模糊化。假如你有诸如Elasticsearch或者Solr这样的搜索引擎,它们存储着JSON文档,MongoDB存着JSON文档,或者一堆JSON文档存放在一个Hadoop集群的HDFS中。你可以使用这三种配
- mac os 系统科研软件总结
张亚雄
mac os
1.1 Microsoft Office for Mac 2011
大客户版,自行搜索。
1.2 Latex (MacTex):
系统环境:https://tug.org/mactex/
&nb
- Maven实战(四)生命周期
AdyZhang
maven
1. 三套生命周期 Maven拥有三套相互独立的生命周期,它们分别为clean,default和site。 每个生命周期包含一些阶段,这些阶段是有顺序的,并且后面的阶段依赖于前面的阶段,用户和Maven最直接的交互方式就是调用这些生命周期阶段。 以clean生命周期为例,它包含的阶段有pre-clean, clean 和 post
- Linux下Jenkins迁移
aijuans
Jenkins
1. 将Jenkins程序目录copy过去 源程序在/export/data/tomcatRoot/ofctest-jenkins.jd.com下面 tar -cvzf jenkins.tar.gz ofctest-jenkins.jd.com &
- request.getInputStream()只能获取一次的问题
ayaoxinchao
requestInputstream
问题:在使用HTTP协议实现应用间接口通信时,服务端读取客户端请求过来的数据,会用到request.getInputStream(),第一次读取的时候可以读取到数据,但是接下来的读取操作都读取不到数据
原因: 1. 一个InputStream对象在被读取完成后,将无法被再次读取,始终返回-1; 2. InputStream并没有实现reset方法(可以重
- 数据库SQL优化大总结之 百万级数据库优化方案
BigBird2012
SQL优化
网上关于SQL优化的教程很多,但是比较杂乱。近日有空整理了一下,写出来跟大家分享一下,其中有错误和不足的地方,还请大家纠正补充。
这篇文章我花费了大量的时间查找资料、修改、排版,希望大家阅读之后,感觉好的话推荐给更多的人,让更多的人看到、纠正以及补充。
1.对查询进行优化,要尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。
2.应尽量避免在 where
- jsonObject的使用
bijian1013
javajson
在项目中难免会用java处理json格式的数据,因此封装了一个JSONUtil工具类。
JSONUtil.java
package com.bijian.json.study;
import java.util.ArrayList;
import java.util.Date;
import java.util.HashMap;
- [Zookeeper学习笔记之六]Zookeeper源代码分析之Zookeeper.WatchRegistration
bit1129
zookeeper
Zookeeper类是Zookeeper提供给用户访问Zookeeper service的主要API,它包含了如下几个内部类
首先分析它的内部类,从WatchRegistration开始,为指定的znode path注册一个Watcher,
/**
* Register a watcher for a particular p
- 【Scala十三】Scala核心七:部分应用函数
bit1129
scala
何为部分应用函数?
Partially applied function: A function that’s used in an expression and that misses some of its arguments.For instance, if function f has type Int => Int => Int, then f and f(1) are p
- Tomcat Error listenerStart 终极大法
ronin47
tomcat
Tomcat报的错太含糊了,什么错都没报出来,只提示了Error listenerStart。为了调试,我们要获得更详细的日志。可以在WEB-INF/classes目录下新建一个文件叫logging.properties,内容如下
Java代码
handlers = org.apache.juli.FileHandler, java.util.logging.ConsoleHa
- 不用加减符号实现加减法
BrokenDreams
实现
今天有群友发了一个问题,要求不用加减符号(包括负号)来实现加减法。
分析一下,先看最简单的情况,假设1+1,按二进制算的话结果是10,可以看到从右往左的第一位变为0,第二位由于进位变为1。
 
- 读《研磨设计模式》-代码笔记-状态模式-State
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
当一个对象的内在状态改变时允许改变其行为,这个对象看起来像是改变了其类
状态模式主要解决的是当控制一个对象状态的条件表达式过于复杂时的情况
把状态的判断逻辑转移到表示不同状态的一系列类中,可以把复杂的判断逻辑简化
如果在
- CUDA程序block和thread超出硬件允许值时的异常
cherishLC
CUDA
调用CUDA的核函数时指定block 和 thread大小,该大小可以是dim3类型的(三维数组),只用一维时可以是usigned int型的。
以下程序验证了当block或thread大小超出硬件允许值时会产生异常!!!GPU根本不会执行运算!!!
所以验证结果的正确性很重要!!!
在VS中创建CUDA项目会有一个模板,里面有更详细的状态验证。
以下程序在K5000GPU上跑的。
- 诡异的超长时间GC问题定位
chenchao051
jvmcmsGChbaseswap
HBase的GC策略采用PawNew+CMS, 这是大众化的配置,ParNew经常会出现停顿时间特别长的情况,有时候甚至长到令人发指的地步,例如请看如下日志:
2012-10-17T05:54:54.293+0800: 739594.224: [GC 739606.508: [ParNew: 996800K->110720K(996800K), 178.8826900 secs] 3700
- maven环境快速搭建
daizj
安装mavne环境配置
一 下载maven
安装maven之前,要先安装jdk及配置JAVA_HOME环境变量。这个安装和配置java环境不用多说。
maven下载地址:http://maven.apache.org/download.html,目前最新的是这个apache-maven-3.2.5-bin.zip,然后解压在任意位置,最好地址中不要带中文字符,这个做java 的都知道,地址中出现中文会出现很多
- PHP网站安全,避免PHP网站受到攻击的方法
dcj3sjt126com
PHP
对于PHP网站安全主要存在这样几种攻击方式:1、命令注入(Command Injection)2、eval注入(Eval Injection)3、客户端脚本攻击(Script Insertion)4、跨网站脚本攻击(Cross Site Scripting, XSS)5、SQL注入攻击(SQL injection)6、跨网站请求伪造攻击(Cross Site Request Forgerie
- yii中给CGridView设置默认的排序根据时间倒序的方法
dcj3sjt126com
GridView
public function searchWithRelated() {
$criteria = new CDbCriteria;
$criteria->together = true; //without th
- Java集合对象和数组对象的转换
dyy_gusi
java集合
在开发中,我们经常需要将集合对象(List,Set)转换为数组对象,或者将数组对象转换为集合对象。Java提供了相互转换的工具,但是我们使用的时候需要注意,不能乱用滥用。
1、数组对象转换为集合对象
最暴力的方式是new一个集合对象,然后遍历数组,依次将数组中的元素放入到新的集合中,但是这样做显然过
- nginx同一主机部署多个应用
geeksun
nginx
近日有一需求,需要在一台主机上用nginx部署2个php应用,分别是wordpress和wiki,探索了半天,终于部署好了,下面把过程记录下来。
1. 在nginx下创建vhosts目录,用以放置vhost文件。
mkdir vhosts
2. 修改nginx.conf的配置, 在http节点增加下面内容设置,用来包含vhosts里的配置文件
#
- ubuntu添加admin权限的用户账号
hongtoushizi
ubuntuuseradd
ubuntu创建账号的方式通常用到两种:useradd 和adduser . 本人尝试了useradd方法,步骤如下:
1:useradd
使用useradd时,如果后面不加任何参数的话,如:sudo useradd sysadm 创建出来的用户将是默认的三无用户:无home directory ,无密码,无系统shell。
顾应该如下操作:
- 第五章 常用Lua开发库2-JSON库、编码转换、字符串处理
jinnianshilongnian
nginxlua
JSON库
在进行数据传输时JSON格式目前应用广泛,因此从Lua对象与JSON字符串之间相互转换是一个非常常见的功能;目前Lua也有几个JSON库,本人用过cjson、dkjson。其中cjson的语法严格(比如unicode \u0020\u7eaf),要求符合规范否则会解析失败(如\u002),而dkjson相对宽松,当然也可以通过修改cjson的源码来完成
- Spring定时器配置的两种实现方式OpenSymphony Quartz和java Timer详解
yaerfeng1989
timerquartz定时器
原创整理不易,转载请注明出处:Spring定时器配置的两种实现方式OpenSymphony Quartz和java Timer详解
代码下载地址:http://www.zuidaima.com/share/1772648445103104.htm
有两种流行Spring定时器配置:Java的Timer类和OpenSymphony的Quartz。
1.Java Timer定时
首先继承jav
- Linux下df与du两个命令的差别?
pda158
linux
一、df显示文件系统的使用情况,与du比較,就是更全盘化。 最经常使用的就是 df -T,显示文件系统的使用情况并显示文件系统的类型。 举比例如以下: [root@localhost ~]# df -T Filesystem Type &n
- [转]SQLite的工具类 ---- 通过反射把Cursor封装到VO对象
ctfzh
VOandroidsqlite反射Cursor
在写DAO层时,觉得从Cursor里一个一个的取出字段值再装到VO(值对象)里太麻烦了,就写了一个工具类,用到了反射,可以把查询记录的值装到对应的VO里,也可以生成该VO的List。
使用时需要注意:
考虑到Android的性能问题,VO没有使用Setter和Getter,而是直接用public的属性。
表中的字段名需要和VO的属性名一样,要是不一样就得在查询的SQL中
- 该学习笔记用到的Employee表
vipbooks
oraclesql工作
这是我在学习Oracle是用到的Employee表,在该笔记中用到的就是这张表,大家可以用它来学习和练习。
drop table Employee;
-- 员工信息表
create table Employee(
-- 员工编号
EmpNo number(3) primary key,
-- 姓