字符串匹配那些事(一)

  本文主要介绍KMP算法和BM算法,它们分别是前缀匹配和后缀匹配的经典算法。所谓前缀匹配是指:模式串和母串的比较从左到右,模式串的移动也是从左到右;所谓后缀匹配是指:模式串和母串的的比较从右到左,模式串的移动从左到右。看得出来前缀匹配和后缀匹配的区别就仅仅在于比较的顺序不同。下文分别从最简单的前缀蛮力匹配算法和后缀蛮力匹配算法入手,详细的介绍KMP算法和BM算法以及它们的实现。

  KMP算法

  首先来看一下前缀蛮力匹配算法的代码(以下代码从linux源码string.h中抠出),模式串和母串的比较是从左到右进行(strncmp()),如果找不到和模式串相同的子串,则从左到右移动模式串,距离为1(s++)。

har * strstr(register const char * s, register const char * wanted)
{
     register
const size_t len = strlen(wanted);
    
if (len == 0 ) return ( char * )s;
    
while ( * s != * wanted || strncmp(s, wanted, len))
        
if ( * s ++ == ' \0 ' )
            
return ( char * )NULL;
    
return ( char * )s;
}

  KMP算法中的KMP分别是指三个人名:Knuth、Morris、Pratt,其本质也是前缀匹配算法,对比前缀蛮力匹配算法,区别在于它会动态调整每次模式串的移动距离,而不仅仅是加一,从而加快匹配过程。下图通过一个直观的例子展示前缀蛮力匹配算法和KMP算法的区别,前文提过,这二者唯一的不同在于模式串移动距离。

字符串匹配那些事(一)_第1张图片

  上图中,前缀蛮力匹配算法发现匹配不上,就向右移动距离1,而KMP算法根据已经比较过的前缀信息,了解到应该移动距离为2;换句话说针对母串的下一个匹配字符,KMP算法了解它下回应该匹配模式串的哪个位置,比如上图中,针对母串的第i+1个字符,KMP算法了解它应该匹配模式串的第k+1个字符。为什么会是这样,这是因为母串的子串T[i-k, i]=aba,而模式串的子串P[0,k]=aba,这二者正好相等。所以模式串应该移动到这个位置,从而让母串的第i+1个字符和模式串的第k+1个字符继续比较。

  那k值又是如何寻找?请注意上图中,模式串位置j已经匹配上母串的位置i,也就是T[i-k, i] = P[j-k, j]=aba;根据前文的T[i-k, i] = P[0, k] = aba, 从而得出P[0, k] = P[j-k, j] = aba。通过观察发现,就是在模式的子串[0, j]中寻找一个最长前缀[0,k],从而使得[j-k, j] = [0,k];

  于是可以定义一个jump数组,jump[j]=k,表示满足P[0, k] ==P[j-k, j] 的最大k值,或者表述为:如果模式串j+1匹配不上母串的i+1,那跳转到模式串k+1继续比较。有了这个jump数组,就很容易写出kmp算法的伪代码:

j: = 0 ;
for i: = 1 to n do
Begin
   
while (j > 0 ) and (P[j + 1 ] <> T[i]) do j: = jump[j];[
   
if P[j + 1 ] = T[i] then j: = j + 1 ;
   
if j = m then
    Begin
         writeln(
' Pattern occurs with shift ' ,i - m);
     end;
end;

  KMP算法中jump数组的构建可以通过归纳法来解决,首先确定jump[1]=0;假设jump[j]=k,也就是P[0, k] == P[j-k, k],如果P[j+1] == P[k+1],那么得出[0,k+1] = P[j-k, j+1],从而更加定义得出jump[j+1] = k+1;

如果P[j+1] != P[k+1],那就接着比较P[j+1] ?= P[k1+1],其中(jump[k] = k1),根据(jump[k]=k1)的定义,P[0,k1] == P[k-k1, k],根据(jump[j]=k)的定义,P[0, k] == P[j-k, k],根据这两个等式,推出P[0, k1] == P[j-k1, j],如果此时P[j+1] == P[k1+1],则得出:jump[j+1] = K1 +1 = jump[k] +1。
如果P[j+1] != P[K1+1],继续递归比较P[j+1] 和P[jump[jump[k]]+1]  ….  P[1]。

  如果依次比较都不相等,那么jump[j+1] = 0;写成伪代码如下,可以看出其实就是模式串自我匹配的过程。

jump[ 1 ]: = 0 ;
j:
= 0 ;
for i: = 2 to m do
begin
   
while (j > 0 ) and (P[j + 1 ] <> P[i]) do j: = jump[j];
    
if P[j + 1 ] = P[i] then j: = j + 1 ;
     jump[i]:
= j;
end;

  考虑模式串匹配不上母串的最坏情况,前缀蛮力匹配算法的时间复杂度最差是O(n×m),最好是O(n), 其中n为母串的长度,m为模式串的长度。KMP算法最差的时间复杂度是O(n);最好的时间复杂度是O(n/m)。

  BM算法

  后缀匹配,是指模式串的比较从右到左,模式串的移动也是从左到右的匹配过程,经典的BM算法其实是对后缀蛮力匹配算法的改进。所以还是先从最简单的后缀蛮力匹配算法开始。下面直接给出伪代码,注意这一行代码:j++;BM算法所做的唯一的事情就是改进了这行代码,即模式串不是每次移动一步,而是根据已经匹配的后缀信息,从而移动更多的距离。

j = 0
while (j <= strlen(T) - strlen(P)) {
    
for (i = strlen(P) - 1 ; i >= 0 && P[i] == T[i + j]; -- i)
    
if (i < 0 )
         match;
    
else
        
++ j;
}

  为了实现更快移动模式串,BM算法定义了两个规则,好后缀规则和坏字符规则,如下图可以清晰的看出他们的含义。利用好后缀和坏字符可以大大加快模式串的移动距离,不是简单的++j,而是j+=max (shift(好后缀), shift(坏字符))

字符串匹配那些事(一)_第2张图片

  先来看如何根据坏字符来移动模式串,shift(坏字符)分为两种情况:

  • 坏字符没出现在模式串中,这时可以把模式串移动到坏字符的下一个字符,继续比较,如下图:

字符串匹配那些事(一)_第3张图片

  • 坏字符出现在模式串中,这时可以把模式串第一个出现的坏字符和母串的坏字符对齐,当然,这样可能造成模式串倒退移动,如下图:

字符串匹配那些事(一)_第4张图片  为了用代码来描述上述的两种情况,设计一个数组bmBc['k'],表示坏字符‘k’在模式串中出现的位置距离模式串末尾的最大长度,那么当遇到坏字符的时候,模式串可以移动距离为: shift(坏字符) = bmBc[T[i]]-(m-1-i)。如下图:
字符串匹配那些事(一)_第5张图片  数组bmBc的创建非常简单,直接贴出代码如下:

void preBmBc( char * x, int m, int bmBc[]) {
    
int i;
    
for (i = 0 ; i & lt; ASIZE; ++ i)
         bmBc[i]
= m;
    
for (i = 0 ; i & lt; m - 1 ; ++ i)
         bmBc[x[i]]
= m - i - 1 ;
}

  再来看如何根据好后缀规则移动模式串,shift(好后缀)分为三种情况:

    • 模式串中有子串匹配上好后缀,此时移动模式串,让该子串和好后缀对齐即可,如果超过一个子串匹配上好后缀,则选择最靠左边的子串对齐。

字符串匹配那些事(一)_第6张图片

    • 模式串中没有子串匹配上后后缀,此时需要寻找模式串的一个最长前缀,并让该前缀等于好后缀的后缀,寻找到该前缀后,让该前缀和好后缀对齐即可。

字符串匹配那些事(一)_第7张图片

    • 模式串中没有子串匹配上后后缀,并且在模式串中找不到最长前缀,让该前缀等于好后缀的后缀。此时,直接移动模式到好后缀的下一个字符。

字符串匹配那些事(一)_第8张图片

  为了实现好后缀规则,需要定义一个数组suffix[],其中suffix[i] = s 表示以i为边界,与模式串后缀匹配的最大长度,如下图所示,用公式可以描述:满足P[i-s, i] == P[m-s, m]的最大长度s。

  构建suffix数组的代码如下:

suffix[m - 1 ] = m;
for (i = m - 2 ;i >= 0 -- i){
     q
= i;
    
while (q >= 0 && P[q] == P[m - 1 - i + q])
        
-- q;
     suffix[i]
= i - q;
}

  有了suffix数组,就可以定义bmGs[]数组,bmGs[i] 表示遇到好后缀时,模式串应该移动的距离,其中i表示好后缀前面一个字符的位置(也就是坏字符的位置),构建bmGs数组分为三种情况,分别对应上述的移动模式串的三种情况

    • 模式串中有子串匹配上好后缀

字符串匹配那些事(一)_第9张图片

    • 模式串中没有子串匹配上好后缀,但找到一个最大前缀

字符串匹配那些事(一)_第10张图片

    • 模式串中没有子串匹配上好后缀,但找不到一个最大前缀

  构建bmGs数组的代码如下:

void preBmGs( char * x, int m, int bmGs[]) {
    
int i, j, suff[XSIZE];
     suffixes(x, m, suff);
    
for (i = 0 ; i < m; ++ i)
         bmGs[i]
= m;
     j
= 0 ;
    
for (i = m - 1 ; i >= 0 ; -- i)
        
if (suff[i] == i + 1 )
            
for (; j < m - 1 - i; ++ j)
                
if (bmGs[j] == m)
                     bmGs[j]
= m - 1 - i;
    
for (i = 0 ; i <= m - 2 ; ++ i)
         bmGs[m
- 1 - suff[i]] = m - 1 - i;
}

  再来重写一遍BM算法:

j= 0
while (j <= strlen(T) - strlen(P)) {
   
for (i = strlen(P) - 1 ; i >= 0 && P[i] == T[i + j]; -- i)
       
if (i < 0 )
            match;
       
else
            j
+= max(bmGs[i], bmBc[T[i]] - (m - 1 - i));
}

  考虑模式串匹配不上母串的最坏情况,后缀蛮力匹配算法的时间复杂度最差是O(n×m),最好是O(n),其中n为母串的长度,m为模式串的长度。BM算法时间复杂度最好是O(n/(m+1)),最差是多少?留给读者思考。

你可能感兴趣的:(算法)