图像超分辨率重建论文和项目

(1)稀疏编码方法(Sparse Coding)

  • Image super-resolution as sparse representation of raw image patches (CVPR2008)
  • 杨建超主页:http://www.ifp.illinois.edu/~jyang29/
  • 基于原始图像块稀疏表示的图像超分辨率
  • Image super-resolution via sparse representation (TIP2010)
  • Coupled dictionary training for image super-resolution (TIP2011)

(2)Self-Exemplars

  • Single Image Super-Resolution from Transformed Self-Exemplars (CVPR2015)
  • Jia-Bin Huang主页:https://sites.google.com/site/jbhuang0604/

(3)贝叶斯方法

  • NBSRF:https://jordisalvador-image.blogspot.com/2015/08/iccv-2015.html
  • Naive Bayes Super-Resolution Forest (ICCV2015)

(4)基于金字塔算法

  • http://vllab.ucmerced.edu/wlai24/LapSRN/

(5)深度学习方法(近几年文章很多啊)

  • Image Super-Resolution Using Deep Convolutional Networks (ECCV2014)
  • Deep Networks for Image Super-Resolution with Sparse Prior (ICCV2015)
  • Robust Single Image Super-Resolution via Deep Networks with Sparse Prior (TIP2016)
  • Accurate Image Super-Resolution Using Very Deep Convolutional Networks (CVPR2016)
  • Deeply-Recursive Convolutional Network for Image Super-Resolution (CVPR2016)
  • Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network (CVPR2016)
  • Deep Laplacian Pyramid Networks for Fast and Accurate Super-Resolution (CVPR 2017),
  • Enhanced Deep Residual Networks for Single Image Super-Resolution (Winner of NTIRE2017 Super-Resolution Challenge)

关于深度学习在超分辨率重建中的应用:https://zhuanlan.zhihu.com/p/25532538?utm_medium=social&utm_source=weibo

给出了几种实现方法及介绍,github里面相应的项目实现。另外还发现一篇有点尺度的文章《用GAN去除(爱情)动作片中的马赛克和衣服》,感兴趣的请参见这里。

(6)Perceptual Loss and GAN(损失函数上改进)

 

  • Perceptual Losses for Real-Time Style Transfer and Super-Resolution (ECCV2016)
  • Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network (CVPR2017)

(7)Google基于哈希机制的实现

  • 《RAISR: Rapid and Accurate Image Super Resolution》

分析:http://blog.csdn.net/jiangjieqazwsx/article/details/69055753

(8)视频SR

  • https://users.soe.ucsc.edu/~milanfar/software/superresolution.html
  • Real-Time Video Super-Resolution with Spatio-Temporal Networks and Motion Compensation (CVPR2017)

小结:SR使用稀疏编码方法取得的方法已经堪称state-of-the-art级别,深度学习出现后又将效果进一步提升。

增补:

今天看到一篇论文:

《Super-Resolution From a Single Image 》(http://www.wisdom.weizmann.ac.il/~vision/SingleImageSR.html),

http://cs.brown.edu/courses/csci1950-g/results/final/pachecoj/ ,

另外附几个相关网页:

https://people.mpi-inf.mpg.de/~kkim/supres/supres.htm

《Example-Based-Super-Resolution-Freeman》

增补:

神经网络实现:

(1)《Accelerating the Super-Resolution Convolutional Neural Network》,使用matlab的实现。

(2)《Pixel Recursive Super Resolution》,项目实现链接。

180911增补:

有关项目网站:https://github.com/huangzehao/Super-Resolution.Benckmark

你可能感兴趣的:(图像超分辨率重建)