【机器学习】【层次聚类算法-2】层次聚类算法(Hierarchical Clustering Alg)的Python实现

别看层次聚类算法简单,但是实现起来在数据结构方面还需要思考一番,不是那么轻而易举的确定数据结构,实现过的人应该知道的。

python代码是自己实现,执行结果和数学计算结果完全一致,可以放心read-code

完全人肉出品,代码详见如下:

1.层次聚类算法的计算过程原理

详见以前文章:https://blog.csdn.net/u012421852/article/details/80531184

2.Code

# -*- coding: utf-8 -*-
"""
@author: 蔚蓝的天空Tom
Talk is cheap, show me the code
Aim: 实现层次聚类算法Hierarchical Clustering Alg
"""

import numpy as np
    
class CHC(object):
    '''
    Hierarchical Clustering Algorithm,HCA,层次聚类算法
    '''
    def __init__(self, samples):
        self.samples = samples
        self.hc = []
        self.cnt = 0
        self._work()

    def indmin_matrix(self, M):
        '''得到矩阵M中最小元素的行列坐标'''
        row,col = divmod(np.argmin(M), np.shape(M)[1])
        return row,col
    
    def em(self, A, B):
        '''
        计算A和B之间的欧式距离
        比如A=[1,1], B=[4,5]的欧式距离=5.0
        '''
        efunc = lambda a,b : np.power(float(a)-float(b),2)
        func = np.frompyfunc(efunc, 2, 1)
        em = np.sqrt(sum(func(A,B)))
        return em
    
    def AverageLinkage(self, A, B):
        '''计算两个组合数据点中的每个数据点与其他所有数据点的距离
        将所有距离的均值作为两个组合数据点间的距离
        a = [1,1],b = [1,1]
        c = [4,5],d = [6,7]
        A=[a,b] B=[c,d]
        则AverageLinkage(A,B)=(em(a,c)+em(a,d)+em(b,c)+em(b,d))/4
        '''
        total = 0.0
        for i in A:
            for j in B:
                total += self.em(i,j)
        ret = total / (np.shape(A)[0]*np.shape(B)[0])
        return ret
        
    def _work(self):
        self.cnt += 1
        print('\n\n=====================%d times Hierarical Clustring=================='%self.cnt)
        #首次进行算法,要初始化结果数组
        if 0 == np.shape(self.hc)[0]:
            initData = [[i] for i in range(np.shape(self.samples)[0])]
            self.hc = [initData]
            print('init self.hc:', self.hc)
        preHC, n = self.hc[-1], np.shape(self.hc[-1])[0]
        print('preHC:',preHC)
        #最后剩2个集合时,停止层次聚集算法
        if 2 == n: 
            print('succeed hierarical clustring:\n',)
            for i in range(np.shape(self.hc)[0]):
                print(self.hc[i])
            return self.hc
        #继续进行层次聚类算法
        dist = np.full(shape=(n,n), fill_value=np.inf)
        value = np.array(self.samples)[:,-1]
        for i in range(n):
            for j in np.arange(start=i+1, stop=n, step=1):
                A,B = value[preHC[i]], value[preHC[j]]
                dist[i,j] = self.AverageLinkage(A,B)
        print('dist:\n', dist)
        #更新聚类算法结果
        row,col = self.indmin_matrix(dist)
        C = []
        newHC = []
        for i in range(n):
            if row == i or col == i:
                if np.shape(C)[0] == 0:
                    C = preHC[row] + preHC[col]
                    newHC.append(C)
                continue
            newHC.append(preHC[i])
        #更新HC结果数组
        self.hc.append(newHC)
        for i in range(np.shape(self.hc)[0]):
            print(self.hc[i])
        return self._work()        
    
if __name__=='__main__':   
    srcData = [[['A'], [16.9]],
                [['B'], [38.5]],
                [['C'], [39.5]],
                [['D'], [80.8]],
                [['E'], [82]],
                [['F'], [34.6]],
                [['G'], [116.1]]]
    hc = CHC(srcData)

3.运行结果

runfile('C:/Users/tom/hierarchical_clustering.py', wdir='C:/Users/tom')

=====================1 times Hierarical Clustring==================
init self.hc: [[[0], [1], [2], [3], [4], [5], [6]]]
preHC: [[0], [1], [2], [3], [4], [5], [6]]
dist:
 [[  inf  21.6  22.6  63.9  65.1  17.7  99.2]
 [  inf   inf   1.   42.3  43.5   3.9  77.6]
 [  inf   inf   inf  41.3  42.5   4.9  76.6]
 [  inf   inf   inf   inf   1.2  46.2  35.3]
 [  inf   inf   inf   inf   inf  47.4  34.1]
 [  inf   inf   inf   inf   inf   inf  81.5]
 [  inf   inf   inf   inf   inf   inf   inf]]
[[0], [1], [2], [3], [4], [5], [6]]
[[0], [1, 2], [3], [4], [5], [6]]


=====================2 times Hierarical Clustring==================
preHC: [[0], [1, 2], [3], [4], [5], [6]]
dist:
 [[  inf  22.1  63.9  65.1  17.7  99.2]
 [  inf   inf  41.8  43.    4.4  77.1]
 [  inf   inf   inf   1.2  46.2  35.3]
 [  inf   inf   inf   inf  47.4  34.1]
 [  inf   inf   inf   inf   inf  81.5]
 [  inf   inf   inf   inf   inf   inf]]
[[0], [1], [2], [3], [4], [5], [6]]
[[0], [1, 2], [3], [4], [5], [6]]
[[0], [1, 2], [3, 4], [5], [6]]


=====================3 times Hierarical Clustring==================
preHC: [[0], [1, 2], [3, 4], [5], [6]]
dist:
 [[  inf  22.1  64.5  17.7  99.2]
 [  inf   inf  42.4   4.4  77.1]
 [  inf   inf   inf  46.8  34.7]
 [  inf   inf   inf   inf  81.5]
 [  inf   inf   inf   inf   inf]]
[[0], [1], [2], [3], [4], [5], [6]]
[[0], [1, 2], [3], [4], [5], [6]]
[[0], [1, 2], [3, 4], [5], [6]]
[[0], [1, 2, 5], [3, 4], [6]]


=====================4 times Hierarical Clustring==================
preHC: [[0], [1, 2, 5], [3, 4], [6]]
dist:
 [[         inf  20.63333333  64.5         99.2       ]
 [         inf          inf  43.86666667  78.56666667]
 [         inf          inf          inf  34.7       ]
 [         inf          inf          inf          inf]]
[[0], [1], [2], [3], [4], [5], [6]]
[[0], [1, 2], [3], [4], [5], [6]]
[[0], [1, 2], [3, 4], [5], [6]]
[[0], [1, 2, 5], [3, 4], [6]]
[[0, 1, 2, 5], [3, 4], [6]]


=====================5 times Hierarical Clustring==================
preHC: [[0, 1, 2, 5], [3, 4], [6]]
dist:
 [[    inf  49.025  83.725]
 [    inf     inf  34.7  ]
 [    inf     inf     inf]]
[[0], [1], [2], [3], [4], [5], [6]]
[[0], [1, 2], [3], [4], [5], [6]]
[[0], [1, 2], [3, 4], [5], [6]]
[[0], [1, 2, 5], [3, 4], [6]]
[[0, 1, 2, 5], [3, 4], [6]]
[[0, 1, 2, 5], [3, 4, 6]]


=====================6 times Hierarical Clustring==================
preHC: [[0, 1, 2, 5], [3, 4, 6]]
succeed hierarical clustring:

[[0], [1], [2], [3], [4], [5], [6]]
[[0], [1, 2], [3], [4], [5], [6]]
[[0], [1, 2], [3, 4], [5], [6]]
[[0], [1, 2, 5], [3, 4], [6]]
[[0, 1, 2, 5], [3, 4], [6]]
[[0, 1, 2, 5], [3, 4, 6]]

(end)

你可能感兴趣的:(机器学习,人工智能)