此题考察了线段树的构造与使用,下图就是线段树的概念图:
【1,10】
【1,5】 【6,10】
【1,3】 【4,5】 【6,8】 【9,10】
【1,2】 【3,3】 【4,4】 【5,5】 【6,7】 【8,8】 【9,9】 【10,10】
【1,1】【2,2】 【6,6】【7,7】
#include
int a[100010];
void Fun1(int x,int y,int a[]){
a[x]=y;
}
int Fun2(int x,int y,int a[]){
int i,sum=0;
for(i=x;i<=y;i++)
sum+=a[i];
return sum;
}
int Fun3(int x,int y,int a[]){
int i,max=-999999;
for(i=x;i<=y;i++)
if(a[i]>max)
max=a[i];
return max;
}
int main()
{
int i,n,m,p,x,y;
scanf("%d%d",&n,&m);
for(i=1;i<=n;i++)
scanf("%d",&a[i]);
while(m--)
{
scanf("%d%d%d",&p,&x,&y);
if(p==1){
Fun1(x,y,a);
}else if(p==2){
printf("%d\n",Fun2(x,y,a));
}else{
printf("%d\n",Fun3(x,y,a));
}
}
return 0;
}
#include
int Testmax(int a,int b)//判断大小的函数
{return a>b?a:b;}
typedef struct node//构造一个线段树的结构体
{
int l,r;
int sum,max;
}node;
node a[400010];//申请线段树节点空间
void Build(int n,int l,int r);//构建一棵范围在l至r范围的线段树
void Insert(int n, int v, int num);//为线段树插入一个值
void Change(int n, int v, int num);//为线段树改变一个权值
int QSum(int n, int l, int r);//求一个范围内的权值总和
int QMax(int n, int l, int r);//求一个范围内的最大值
int main()
{
int i,j,n,m,value,que,b,c;
scanf("%d%d",&n,&m);
Build(1,1,n);//构建一个范围为1至n的线段树
for(i=1;i<=n;i++)
{
scanf("%d",&value);
Insert(1,i,value);//向已有线段树中插入权值
}
while(m--)
{
scanf("%d%d%d",&que,&b,&c);
switch(que)
{
case 1:Change(1,b,c);break;//改变节点b的权值为c
case 2:printf("%d\n", QSum(1,b,c));break;//计算b至c范围内的权值和
case 3:printf("%d\n", QMax(1,b,c));break;//计算b至c范围内的最大权值
}
}
return 0;
}
void Build(int n,int l,int r)//构建一棵范围在l至r范围的线段树
{
a[n].l=l;//左边距
a[n].r=r;//右边距
a[n].sum=0;//范围在l至r之间权值和
a[n].max=0;//范围在l至r之间权值最大值
if(l==r)//如果左右边距相同不再构建孩子
return;
Build(n*2,l,(l+r)/2);//构建范围为l至(l+r)/2的左孩子
Build(n*2+1,(l+r)/2+1,r);//构建范围为l至(l+r)/2的右孩子
}
void Insert(int n, int v, int num)//为线段树插入一个值
{
a[n].sum += num;//总和加入新数
if(a[n].max < num)
a[n].max = num;//更新最大值
if(a[n].l == a[n].r)//左右边距相等不再插入更新
return;
if(v <= (a[n].l + a[n].r) / 2)
Insert(n*2, v, num);//更新左孩子
else
Insert(n*2+1, v, num);//更新右孩子
}
void Change(int n, int v, int num)//为线段树改变一个权值
{
if(v == a[n].l && v == a[n].r)//下标与左右范围相等 ,存本数
{
a[n].sum = num;
a[n].max = num;
return;
}
int middle = (a[n].l + a[n].r) / 2;
if(v <= middle)
Change(n*2, v, num);//更改左孩子
else
Change(n*2+1, v, num);//更改右孩子
a[n].sum = a[n*2].sum + a[n*2+1].sum;//更新总和
a[n].max = Testmax(a[n*2].max,a[n*2+1].max);//更新最大值
}
int QSum(int n, int l, int r)//求一个范围内的权值总和
{
if(l == a[n].l && r == a[n].r)//所求范围与左右范围相等 ,直接输出总和
return a[n].sum;
int middle = (a[n].l + a[n].r) / 2;
if(r <= middle)
return QSum(n*2, l, r);//若所求范围在左孩子范围内,从左孩子寻找
else if(l > middle)
return QSum(n*2+1, l, r);//若所求范围在右孩子范围内,从右孩子寻找
else return QSum(n*2,l,middle) + QSum(n*2+1,middle+1,r);//若范围在左右孩子之间,分别求总和
}
int QMax(int n, int l, int r)//计算b至c范围内的最大权值
{
if(l == a[n].l && r == a[n].r)//所求范围与左右范围相等 ,直接输出最大值
return a[n].max;
int middle = (a[n].l + a[n].r) / 2;
if(r <= middle)
return QMax(n*2, l, r);//若所求范围在左孩子范围内,从左孩子寻找
else if(l > middle)
return QMax(n*2+1, l, r);//若所求范围在右孩子范围内,从右孩子寻找
else
return Testmax(QMax(n*2, l, middle), QMax(n*2+1, middle+1, r));//若范围在左右孩子之间,分别求最大值,然后求最终最大值
}