- 探索深度学习中的图像超分辨率:SMFANet 模型解析
RockLiu@805
深度学习人工智能
探索深度学习中的图像超分辨率:SMFANet模型解析在现代计算机视觉中,图像超分辨率(Super-Resolution)是一个备受关注的研究领域。它的目标是将低分辨率的图像恢复为高分辨率的图像,同时保留或增强细节信息。近年来,基于深度学习的方法在这方面的研究取得了显著进展。今天,我们将一起探索一个轻量级、高效的超分辨率模型——SMFANet,并深入分析其实现细节。一、超分辨率技术的意义与挑战图像超
- 人工智能混合编程实践:Python ONNX FP16加速进行图像超分重建
FriendshipT
人工智能混合编程实践人工智能python开发语言超分辨率重建FP16onnx
人工智能混合编程实践:PythonONNXFP16加速进行图像超分重建前言相关介绍Python简介ONNX简介图像超分辨率重建简介应用场景前提条件实验环境项目结构使用PythonONNXFP16加速进行图像超分重建sr_py_infer_fp16.py参考文献前言由于本人水平有限,难免出现错漏,敬请批评改正。更多精彩内容,可点击进入Python日常小操作专栏、OpenCV-Python小应用专栏、
- 19 - SAFM模块
Leo Chaw
深度学习算法实现深度学习计算机视觉机器学习
论文《Spatially-AdaptiveFeatureModulationforEfficientImageSuper-Resolution》1、作用这篇论文通过提出空间自适应特征调制(Spatially-AdaptiveFeatureModulation,SAFM)机制,旨在解决图像超分辨率(Super-Resolution,SR)的高效设计问题。在图像超分辨率重建性能上取得了显著的成果,这些
- Real-ESRGAN-GUI 安装与配置完全指南
Real-ESRGAN-GUI安装与配置完全指南Real-ESRGAN-GUILovelyReal-ESRGAN/Real-CUGANGUIWrapper项目地址:https://gitcode.com/gh_mirrors/re/Real-ESRGAN-GUI项目基础介绍Real-ESRGAN-GUI是一个基于Real-ESRGAN的图像超分辨率增强工具的简易图形用户界面。该界面旨在让用户轻松地
- 轻量化图像超分新范式:残差注意力网络重构超分计算逻辑
CodePatentMaster
网络重构
轻量化图像超分新范式:残差注意力网络重构超分计算逻辑一、技术原理深度剖析痛点定位当前图像超分辨率技术面临三重挑战:显存黑洞:传统残差网络堆叠导致参数量指数级增长,移动端部署时显存占用超过500MB细节丢失:常规通道注意力机制在压缩过程中丢失高频纹理信息,PSNR指标下降超过1.2dB推理延迟:典型4倍超分模型在移动端GPU的推理时间超过300ms,难以满足实时视频处理需求实现路径专利CN20241
- 非盲图像超分辨率与盲图像超分辨率技术2025.6.5
mozun2020
IP1:图像处理计算机视觉人工智能超分辨率重建图像处理信号处理
本文详细介绍非盲图像超分辨率与盲图像超分辨率技术。主要内容如下:基本概念与问题定义:介绍图像超分辨率的基本概念,解释盲与非盲超分辨率的核心区别,并使用表格对比两种技术。非盲图像超分辨率:原理与方法:详细说明非盲超分辨率的技术原理,列举典型方法,并介绍电力设备红外图像处理等应用场景。盲图像超分辨率:挑战与技术路线:分析盲超分辨率面临的三大挑战,系统分类技术方法(显式/隐式建模),并介绍Real-ES
- 【Block总结】TAB,令牌聚合块|融合组内自注意力(IASA)和组间交叉注意力(IRCA)|即插即用
AI浩
Block总结人工智能计算机视觉
论文信息本文提出了一种新颖的轻量级图像超分辨率网络,称为内容感知令牌聚合网络(CATANet)。该网络旨在解决基于Transformer的方法在高空间分辨率下的计算复杂度问题。CATANet通过高效的内容感知令牌聚合模块(CATA)来捕捉长距离依赖关系,同时保持高推理速度。论文连接:https://arxiv.org/pdf/2503.06896Github代码链接:https://github.
- 【PyTorch项目实战】超分RCAN:使用非常深的残差通道注意力网络实现图像超分辨率 —— (自研)解决了RCAN恢复图像的模糊性
胖墩会武术
深度学习PyTorch项目实战python残差网络resnet超分辨率重建RCAN
文章目录一、论文详解1.1、项目背景1.2、研究现状1.3、论文核心1.4、网络模型(RCAN,ResidualChannelAttentionNetworks)1.4.1、残差中的残差(RIR,ResidualInResidual):由G个残差组(RG)和1条长跳跃连接(LSC)组成;每个RG由B个残差通道注意力块(RCAB)和1条短跳跃连接(SSC)组成;每个RCAB由1个通道注意力(CA)和
- python语言中如何构建图像超分辨率重建系统,并支持SRResNet和SRGAN算法,且使用PyQt5进行界面设计。
OICQQ67658008
python超分辨率重建算法
python语言中如何构建图像超分辨率重建系统,并支持SRResNet和SRGAN算法,且使用PyQt5进行界面设计。文章目录1.安装依赖库2.创建主窗口`main_window.py`3.实现SRResNet逻辑`srresnet.py`4.实现SRGAN逻辑`srgan.py`1.安装依赖库2.创建登录界面`login_window.py`3.创建主窗口`main_window.py`4.运行
- 深度学习中的Pixel Shuffle和Pixel Unshuffle:图像超分辨率的秘密武器
程序员非鱼
深度学习基础知识深度学习人工智能pytorchPixelShufflepython
在深度学习的计算机视觉任务中,提升图像分辨率和压缩特征图是重要需求。PixelShuffle和PixelUnshuffle是在超分辨率、图像生成等任务中常用的操作,能够通过转换空间维度和通道维度来优化图像特征表示。本篇文章将深入介绍这两种操作的原理,并结合PyTorch实现可视化展示,希望能帮助大家更好地理解他们的用途与效果。为什么需要PixelShuffle和PixelUnshufflePixe
- TPAMI 2025 | 探索 Transformer 中受频率启发的优化方法用于高效单图像超分辨率
小白学视觉
论文解读IEEETPAMItransformer深度学习人工智能IEEETPAMI论文解读
论文信息题目:ExploringFrequency-InspiredOptimizationinTransformerforEfficientSingleImageSuper-Resolution探索Transformer中受频率启发的优化方法用于高效单图像超分辨率作者:AoLi,LeZhang,YunLiu,CeZhu源码:https://github.com/AVC2-UESTC/Freque
- Pytorch实现之对称卷积神经网络结构实现超分辨率
这张生成的图像能检测吗
优质GAN模型训练自己的数据集pytorchcnn人工智能生成对抗网络神经网络深度学习
简介简介:针对传统的超分辨率重建技术所重建的图像过于光滑且缺乏细节的问题,作者提出了一种改进的生成对抗图像超分辨率网络。该改进方法基于深度神经网络,其生成模型包含多层卷积模块和多层反卷积模块,其中在感知损失基础上增加了跳层连接和损失函数。该判别模型由多层神经网络组成,其损失函数基于生成式对抗网络生成的判别模型损失函数。论文题目:ImageSuper-resolutionReconstruction
- 基于生成对抗网络(GAN)的图像超分辨率实战:从SRGAN到ESRGAN
Evaporator Core
#深度学习强化学习生成模型生成对抗网络人工智能神经网络
图像超分辨率(ImageSuper-Resolution)是一种通过算法将低分辨率图像转换为高分辨率图像的技术,广泛应用于医学影像、卫星图像和视频增强等领域。生成对抗网络(GAN)是图像超分辨率的经典方法,而增强型超分辨率生成对抗网络(ESRGAN)则通过引入残差网络和感知损失进一步提升了图像质量。本文将通过一个完整的实战案例,展示如何使用SRGAN和ESRGAN进行图像超分辨率,并提供详细的代码
- HiPixel开源AI驱动的图像超分辨率的原生macOS 应用程序,使用 SwiftUI 构建并利用 Upscayl 强大的 AI 模型
2301_78755287
swiftuiiosswift人工智能开源图像处理
一、软件介绍文末提供程序和源码下载HiPixel是一个开源程序基于SwiftUI构建的macOS原生应用程序,用于AI驱动的图像超分辨率,并利用Upscayl的强大AI模型。二、软件特征具有SwiftUI界面的原生macOS应用程序使用AI模型进行高质量图像放大通过GPU加速实现快速处理支持各种图像格式用于自动处理新添加图像的文件夹监控现代、直观的用户界面三、为什么选择HiPixel?虽然Upsc
- NTIRE比赛:技术前沿、国内企业表现与计算机视觉未来展望
AndrewHZ
深度学习新浪潮计算机视觉人工智能深度学习调研报告算法NTIRE画质算法
一、NTIRE比赛概述:图像恢复与增强领域的全球竞技场1.1NTIRE的定位与历史NTIRE(NewTrendsinImageRestorationandEnhancement)是计算机视觉领域最具影响力的国际赛事之一,聚焦于图像恢复与增强技术的前沿探索。自2017年首次举办以来,NTIRE每年与计算机视觉顶会CVPR联合召开,成为学术界与工业界技术实力的重要展示平台。其竞赛内容涵盖图像超分辨率、
- PSPNet在图像超分辨率中的应用
AI天才研究院
AI大模型企业级应用开发实战AI大模型应用入门实战与进阶DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
PSPNet在图像超分辨率中的应用1.背景介绍图像超分辨率(ImageSuper-Resolution,ISR)是计算机视觉领域的一个重要研究方向,旨在从低分辨率图像中重建高分辨率图像。传统的ISR方法主要基于插值算法,如双线性插值、双三次插值等,但这些方法往往无法恢复图像的高频细节信息。近年来,随着深度学习的发展,基于卷积神经网络(ConvolutionalNeuralNetwork,CNN)的
- Pytorch实现之基于相对平均生成对抗网络的人脸图像超分辨率
这张生成的图像能检测吗
优质GAN模型训练自己的数据集生成对抗网络人工智能神经网络计算机视觉深度学习pythonpytorch
简介简介:改进SRGAN,并使用相对平均生成对抗网络的人脸图像超分辨率训练自己的数据集论文题目:FaceImageSuper-resolutionBasedOnRelativeAverageGenerativeAdversarialNetworks(基于相对平均生成对抗网络的人脸图像超分辨率)会议:20212ndAsiaSymposiumonSignalProcessing(ASSP)摘要:人脸图
- 使用Diffusion Models进行图像超分辩重建
沉迷单车的追风少年
DiffusionModels与深度学习人工智能计算机视觉超分辨率重建AIGC深度学习
DiffusionModels专栏文章汇总:入门与实战前言:图像超分辨率重建是一个经典CV任务,其实LR(低分辨率)和HR(高分辨率)图像仅在高频细节上存在差异。通过添加适当的噪声,LR图像将变得与其HR对应图像无法区分。这篇博客介绍一种方式巧妙利用这个规律使用DiffusionModels进行图像超分辩重建任务。目录贡献概述动机方法详解模型训练论文贡献概述这项研究提出了一种基于扩散逆过程的新图像
- 使用opencv实现深度学习的图片与视频的超分辨率
人工智能研究所
人工智能之计算机视觉opencv深度学习视频超分辨率图片超分辨率
图片超分辨率什么是视频与图片的超分辨率,总结一下便是给一张分辨率比较低的图片,进行超分辨率的处理后,生成比较清晰的高分辨率的图片,上图图片完美解释了超分辨率的过程,由于不同的算法不同,处理的结果也不相同,本期我们介绍一下如何进行图片的超分辨率的处理。·EDSR模型图像超分辨率EDSR:EnhancedDeepResidualNetworksforSingleImageSuper-Resolutio
- 【YOLOv10改进[注意力]】引入2024.9的LIA(local importance-based attention,基于局部重要性的注意力) | 图像超分辨率任务
Jackilina_Stone
【魔改】YOLOv10YOLO目标检测人工智能计算机视觉python
本文将进行在YOLOv10中引入2024.9.20的LIA模块魔改v10,文中含全部代码、详细修改方式。助您轻松理解改进的方法。目录一LIA二安装YOLO三魔改YOLOv101整体修改①添加python文件
- Python(PyTorch)和MATLAB及Rust和C++结构相似度指数测量导图
亚图跨际
Python交叉知识算法量化检查图像压缩质量低分辨率多光谱峰值信噪比端到端优化图像压缩手术机器人三维实景实时可微分渲染重建三维可视化
要点量化检查图像压缩质量低分辨率多光谱和高分辨率图像实现超分辨率分析图像质量图像索引/多尺度结构相似度指数和光谱角映射器及视觉信息保真度多种指标峰值信噪比和结构相似度指数测量结构相似性图像分类PNG和JPEG图像相似性近似算法图像压缩,视频压缩、端到端优化图像压缩、神经图像压缩、GPU变速图像压缩手术机器人深度估计算法重建三维可视化推理图像超分辨率算法模型三维实景实时可微分渲染算法MATLAB结构
- stable diffusion和GAN网络的区别,优点缺点是什么
爱好很多的算法工程师
SD大模型AIGC笔记
稳定扩散(stablediffusion)和生成对抗网络(GAN)是两种不同的深度学习方法。稳定扩散是一种无监督学习方法,用于图像超分辨率重建。它基于扩散过程模型,通过在不同的时间步骤中对图像进行重建来增加分辨率。该方法能够有效地增加图像的细节,并产生更高质量的图像。其优点包括:无监督学习:稳定扩散不需要使用任何带标签的训练数据,因此可以用于无监督任务。高分辨率重建:稳定扩散能够通过迭代过程逐渐增
- (condition instance batchnorm)A LEARNED REPRESENTATION FOR ARTISTIC STYLE
水球喵
分享一个不错的对batchnorm的解释https://blog.csdn.net/aichipmunk/article/details/54234646.作者提到:BatchNorm会忽略图像像素(或者特征)之间的绝对差异(因为均值归零,方差归一),instancenorm也是一样的,他们只考虑相对差异,所以在不需要绝对差异的任务中(比如分类、风格),有锦上添花的效果。而对于图像超分辨率这种需要
- 【深度学习】实验7实验结果,图像超分辨
X.AI666
深度学习深度学习人工智能
代码和报告均为本人自己实现(实验满分),只展示主要任务实验结果,如果需要详细的实验报告或者代码可以私聊博主,接实验技术指导1对1实验要求布置请看http://t.csdnimg.cn/jCsv6Model实现说明代码实现了一个基于生成对抗网络(SRGAN)的图像超分辨率模型。总体来说,SRGAN由两个主要组件组成:生成器(Generator)和判别器(Discriminator),它们相互对抗并共
- 超分之SRGAN
深度学习炼丹师-CXD
超分SR计算机视觉人工智能深度学习超分辨率重建论文笔记
Photo-RealisticSingleImageSuper-ResolutionUsingaGenerativeAdversarialNetwork使用生成对抗网络的逼真单图像超分辨率一作:ChristianLedig是Twitter2017年的一篇论文。超分之SRGAN代码实现文章目录0.摘要1.引言1.1相关工作1.1.1介绍了SR技术的发展历程1.1.2介绍了SR技术中卷积神经网络的设计
- TecoGAN视频超分辨率算法
AI算法-图哥
--图像画质增强计算机视觉图像处理超分辨率人工智能深度学习
1.摘要对抗训练在单图像超分辨率任务中非常成功,因为它可以获得逼真、高度细致的输出结果。因此,当前最优的视频超分辨率方法仍然支持较简单的范数(如L2)作为对抗损失函数。直接向量范数作损失函数求平均的本质可以轻松带来时间流畅度和连贯度,但生成图像缺乏空间细节。该研究提出了一种用于视频超分辨率的对抗训练方法,可以使分辨率具备时间连贯度,同时不会损失空间细节。该研究聚焦于新型损失的形成,并基于已构建的生
- 【2023 CCF 大数据与计算智能大赛】基于TPU平台实现超分辨率重建模型部署 基于预训练ESPCN的轻量化图像超分辨率模型TPU部署方案
算能开发者社区
大数据超分辨率重建人工智能
2023CCF大数据与计算智能大赛《基于TPU平台实现超分辨率重建模型部署》作品名:基于预训练ESPCN的轻量化图像超分辨率模型TPU部署方案队伍名:Absofastlutely蒋松儒计算机科学与技术系硕士南京大学中国-江苏
[email protected]吕欢欢计算机科学与技术系博士南京大学中国-江苏
[email protected]张凯铭物理学系本科四川大学中国-四川283574
- CVPR 2021 论文大盘点-超分辨率篇
深度学习技术前沿
算法大数据计算机视觉神经网络机器学习
作者|CV君来源|OpenCV中文网编辑|极市平台【导读】本文总结超分辨率相关论文,包括图像、视频、盲超分辨率、无参考型图像超分辨率以及基于参考的超分辨率等。共计32篇。其中大量的论文在研究超分辨率算法的加速和训练、真实世界超分辨率问题,说明学界算法在加速向工业界产品转化。值得大家关注~大家可以在https://openaccess.thecvf.com/CVPR2021?day=all按照题目下
- 计算机视觉基础(12)——图像恢复
猪猪的超超
计算机视觉基础计算机视觉人工智能图像处理图像恢复
前言我们将学习图像恢复相关知识。主要有图像恢复的定义、评价标准和实现图像恢复的方法。图像恢复任务包括图像去噪、去模糊、图像超分辨率、图像修复等;评价标准有峰值信噪比和结构相似性;图像超分辨的方法有传统方法和基于深度学习的方法:传统方法包括了基于插值的方法和基于字典学习,而深度学习方法有很多,包括SRCNN,VDSR等。一、图像恢复的定义1.1图像恢复的意义由于环境的⼲扰(速度过快、天⽓原因、识别噪
- 【图像重构】基于OMP算法实现图像重构附matlab代码
matlab科研助手
图像处理机器学习算法人工智能
1内容介绍为了提高可见光图像的识别和检测能力,提出基于OMP算法的可见光图像超分辨率重构方法.建立可见光图像的视觉信息采集模型,采用空间锚点邻域特征匹配方法进行的可见光图像超分辨特征分解,提取可见光图像边缘轮廓特征量,结合残差特征估计高分辨率图像特征融合和优化分割,建立可见光图像的超分辨率重建特征分布集,采用边缘信息空间区域融合方法进行可见光图像的像素信息融合和优化特征重组,提取可见光图像的模糊度
- rust的指针作为函数返回值是直接传递,还是先销毁后创建?
wudixiaotie
返回值
这是我自己想到的问题,结果去知呼提问,还没等别人回答, 我自己就想到方法实验了。。
fn main() {
let mut a = 34;
println!("a's addr:{:p}", &a);
let p = &mut a;
println!("p's addr:{:p}", &a
- java编程思想 -- 数据的初始化
百合不是茶
java数据的初始化
1.使用构造器确保数据初始化
/*
*在ReckInitDemo类中创建Reck的对象
*/
public class ReckInitDemo {
public static void main(String[] args) {
//创建Reck对象
new Reck();
}
}
- [航天与宇宙]为什么发射和回收航天器有档期
comsci
地球的大气层中有一个时空屏蔽层,这个层次会不定时的出现,如果该时空屏蔽层出现,那么将导致外层空间进入的任何物体被摧毁,而从地面发射到太空的飞船也将被摧毁...
所以,航天发射和飞船回收都需要等待这个时空屏蔽层消失之后,再进行
&
- linux下批量替换文件内容
商人shang
linux替换
1、网络上现成的资料
格式: sed -i "s/查找字段/替换字段/g" `grep 查找字段 -rl 路径`
linux sed 批量替换多个文件中的字符串
sed -i "s/oldstring/newstring/g" `grep oldstring -rl yourdir`
例如:替换/home下所有文件中的www.admi
- 网页在线天气预报
oloz
天气预报
网页在线调用天气预报
<%@ page language="java" contentType="text/html; charset=utf-8"
pageEncoding="utf-8"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transit
- SpringMVC和Struts2比较
杨白白
springMVC
1. 入口
spring mvc的入口是servlet,而struts2是filter(这里要指出,filter和servlet是不同的。以前认为filter是servlet的一种特殊),这样就导致了二者的机制不同,这里就牵涉到servlet和filter的区别了。
参见:http://blog.csdn.net/zs15932616453/article/details/8832343
2
- refuse copy, lazy girl!
小桔子
copy
妹妹坐船头啊啊啊啊!都打算一点点琢磨呢。文字编辑也写了基本功能了。。今天查资料,结果查到了人家写得完完整整的。我清楚的认识到:
1.那是我自己觉得写不出的高度
2.如果直接拿来用,很快就能解决问题
3.然后就是抄咩~~
4.肿么可以这样子,都不想写了今儿个,留着作参考吧!拒绝大抄特抄,慢慢一点点写!
- apache与php整合
aichenglong
php apache web
一 apache web服务器
1 apeche web服务器的安装
1)下载Apache web服务器
2)配置域名(如果需要使用要在DNS上注册)
3)测试安装访问http://localhost/验证是否安装成功
2 apache管理
1)service.msc进行图形化管理
2)命令管理,配
- Maven常用内置变量
AILIKES
maven
Built-in properties
${basedir} represents the directory containing pom.xml
${version} equivalent to ${project.version} (deprecated: ${pom.version})
Pom/Project properties
Al
- java的类和对象
百合不是茶
JAVA面向对象 类 对象
java中的类:
java是面向对象的语言,解决问题的核心就是将问题看成是一个类,使用类来解决
java使用 class 类名 来创建类 ,在Java中类名要求和构造方法,Java的文件名是一样的
创建一个A类:
class A{
}
java中的类:将某两个事物有联系的属性包装在一个类中,再通
- JS控制页面输入框为只读
bijian1013
JavaScript
在WEB应用开发当中,增、删除、改、查功能必不可少,为了减少以后维护的工作量,我们一般都只做一份页面,通过传入的参数控制其是新增、修改或者查看。而修改时需将待修改的信息从后台取到并显示出来,实际上就是查看的过程,唯一的区别是修改时,页面上所有的信息能修改,而查看页面上的信息不能修改。因此完全可以将其合并,但通过前端JS将查看页面的所有信息控制为只读,在信息量非常大时,就比较麻烦。
- AngularJS与服务器交互
bijian1013
JavaScriptAngularJS$http
对于AJAX应用(使用XMLHttpRequests)来说,向服务器发起请求的传统方式是:获取一个XMLHttpRequest对象的引用、发起请求、读取响应、检查状态码,最后处理服务端的响应。整个过程示例如下:
var xmlhttp = new XMLHttpRequest();
xmlhttp.onreadystatechange
- [Maven学习笔记八]Maven常用插件应用
bit1129
maven
常用插件及其用法位于:http://maven.apache.org/plugins/
1. Jetty server plugin
2. Dependency copy plugin
3. Surefire Test plugin
4. Uber jar plugin
1. Jetty Pl
- 【Hive六】Hive用户自定义函数(UDF)
bit1129
自定义函数
1. 什么是Hive UDF
Hive是基于Hadoop中的MapReduce,提供HQL查询的数据仓库。Hive是一个很开放的系统,很多内容都支持用户定制,包括:
文件格式:Text File,Sequence File
内存中的数据格式: Java Integer/String, Hadoop IntWritable/Text
用户提供的 map/reduce 脚本:不管什么
- 杀掉nginx进程后丢失nginx.pid,如何重新启动nginx
ronin47
nginx 重启 pid丢失
nginx进程被意外关闭,使用nginx -s reload重启时报如下错误:nginx: [error] open() “/var/run/nginx.pid” failed (2: No such file or directory)这是因为nginx进程被杀死后pid丢失了,下一次再开启nginx -s reload时无法启动解决办法:nginx -s reload 只是用来告诉运行中的ng
- UI设计中我们为什么需要设计动效
brotherlamp
UIui教程ui视频ui资料ui自学
随着国际大品牌苹果和谷歌的引领,最近越来越多的国内公司开始关注动效设计了,越来越多的团队已经意识到动效在产品用户体验中的重要性了,更多的UI设计师们也开始投身动效设计领域。
但是说到底,我们到底为什么需要动效设计?或者说我们到底需要什么样的动效?做动效设计也有段时间了,于是尝试用一些案例,从产品本身出发来说说我所思考的动效设计。
一、加强体验舒适度
嗯,就是让用户更加爽更加爽的用你的产品。
- Spring中JdbcDaoSupport的DataSource注入问题
bylijinnan
javaspring
参考以下两篇文章:
http://www.mkyong.com/spring/spring-jdbctemplate-jdbcdaosupport-examples/
http://stackoverflow.com/questions/4762229/spring-ldap-invoking-setter-methods-in-beans-configuration
Sprin
- 数据库连接池的工作原理
chicony
数据库连接池
随着信息技术的高速发展与广泛应用,数据库技术在信息技术领域中的位置越来越重要,尤其是网络应用和电子商务的迅速发展,都需要数据库技术支持动 态Web站点的运行,而传统的开发模式是:首先在主程序(如Servlet、Beans)中建立数据库连接;然后进行SQL操作,对数据库中的对象进行查 询、修改和删除等操作;最后断开数据库连接。使用这种开发模式,对
- java 关键字
CrazyMizzz
java
关键字是事先定义的,有特别意义的标识符,有时又叫保留字。对于保留字,用户只能按照系统规定的方式使用,不能自行定义。
Java中的关键字按功能主要可以分为以下几类:
(1)访问修饰符
public,private,protected
p
- Hive中的排序语法
daizj
排序hiveorder byDISTRIBUTE BYsort by
Hive中的排序语法 2014.06.22 ORDER BY
hive中的ORDER BY语句和关系数据库中的sql语法相似。他会对查询结果做全局排序,这意味着所有的数据会传送到一个Reduce任务上,这样会导致在大数量的情况下,花费大量时间。
与数据库中 ORDER BY 的区别在于在hive.mapred.mode = strict模式下,必须指定 limit 否则执行会报错。
- 单态设计模式
dcj3sjt126com
设计模式
单例模式(Singleton)用于为一个类生成一个唯一的对象。最常用的地方是数据库连接。 使用单例模式生成一个对象后,该对象可以被其它众多对象所使用。
<?phpclass Example{ // 保存类实例在此属性中 private static&
- svn locked
dcj3sjt126com
Lock
post-commit hook failed (exit code 1) with output:
svn: E155004: Working copy 'D:\xx\xxx' locked
svn: E200031: sqlite: attempt to write a readonly database
svn: E200031: sqlite: attempt to write a
- ARM寄存器学习
e200702084
数据结构C++cC#F#
无论是学习哪一种处理器,首先需要明确的就是这种处理器的寄存器以及工作模式。
ARM有37个寄存器,其中31个通用寄存器,6个状态寄存器。
1、不分组寄存器(R0-R7)
不分组也就是说说,在所有的处理器模式下指的都时同一物理寄存器。在异常中断造成处理器模式切换时,由于不同的处理器模式使用一个名字相同的物理寄存器,就是
- 常用编码资料
gengzg
编码
List<UserInfo> list=GetUserS.GetUserList(11);
String json=JSON.toJSONString(list);
HashMap<Object,Object> hs=new HashMap<Object, Object>();
for(int i=0;i<10;i++)
{
- 进程 vs. 线程
hongtoushizi
线程linux进程
我们介绍了多进程和多线程,这是实现多任务最常用的两种方式。现在,我们来讨论一下这两种方式的优缺点。
首先,要实现多任务,通常我们会设计Master-Worker模式,Master负责分配任务,Worker负责执行任务,因此,多任务环境下,通常是一个Master,多个Worker。
如果用多进程实现Master-Worker,主进程就是Master,其他进程就是Worker。
如果用多线程实现
- Linux定时Job:crontab -e 与 /etc/crontab 的区别
Josh_Persistence
linuxcrontab
一、linux中的crotab中的指定的时间只有5个部分:* * * * *
分别表示:分钟,小时,日,月,星期,具体说来:
第一段 代表分钟 0—59
第二段 代表小时 0—23
第三段 代表日期 1—31
第四段 代表月份 1—12
第五段 代表星期几,0代表星期日 0—6
如:
*/1 * * * * 每分钟执行一次。
*
- KMP算法详解
hm4123660
数据结构C++算法字符串KMP
字符串模式匹配我们相信大家都有遇过,然而我们也习惯用简单匹配法(即Brute-Force算法),其基本思路就是一个个逐一对比下去,这也是我们大家熟知的方法,然而这种算法的效率并不高,但利于理解。
假设主串s="ababcabcacbab",模式串为t="
- 枚举类型的单例模式
zhb8015
单例模式
E.编写一个包含单个元素的枚举类型[极推荐]。代码如下:
public enum MaYun {himself; //定义一个枚举的元素,就代表MaYun的一个实例private String anotherField;MaYun() {//MaYun诞生要做的事情//这个方法也可以去掉。将构造时候需要做的事情放在instance赋值的时候:/** himself = MaYun() {*
- Kafka+Storm+HDFS
ssydxa219
storm
cd /myhome/usr/stormbin/storm nimbus &bin/storm supervisor &bin/storm ui &Kafka+Storm+HDFS整合实践kafka_2.9.2-0.8.1.1.tgzapache-storm-0.9.2-incubating.tar.gzKafka安装配置我们使用3台机器搭建Kafk
- Java获取本地服务器的IP
中华好儿孙
javaWeb获取服务器ip地址
System.out.println("getRequestURL:"+request.getRequestURL());
System.out.println("getLocalAddr:"+request.getLocalAddr());
System.out.println("getLocalPort:&quo