Yolov3参数解释以及答疑

目录

 

参数解析

训练答疑


参数解析




[net]
#Testing
#batch=1         //test:一次一个图片
#subdivisions=1  
#Training				 
 batch=32				 //一次迭代送入网络的图片数
 subdivisions=8  //一次迭代分成subdivisions次前向计算,这里是32/8
width=416        //图片宽高 ,要求width==height, 并且为32的倍数。增大分辨率可以检测到更加细小的物体
height=416			
channels=3      
momentum=0.9     //影响梯度下降到最优的速度,一般默认0.9。如想深入了解可以学习吴恩达深度学习课,
decay=0.0005     //权重衰减正则项系数,防止过拟合
angle=0          //旋转角度增加训练样本
saturation = 1.5 //增加饱和度增加训练样本
exposure = 1.5	 //增加曝光增加训练样本
hue=.1			 //通过调整色调来增加训练样本

learning_rate=0.0001 //学习率,一般默认为0.001
burn_in=1000         //1000次后学习率

你可能感兴趣的:(camera,ISP图像信号处理)