- Qwen 模型自动构建知识图谱,生成病例 + 评价指标优化策略
2301_79306982
ai千问语言模型人工智能
关于数据库和检索方式的选择AIMedicalConsultantforVisualQuestionAnswering(VQA)系统:更适合在前端使用向量数据库(如FAISS)结合关系型数据库来实现图像和文本的检索与存储。因为在VQA场景中,你需要对患者上传的图像或文本症状进行语义向量化,以便快速查找相似病例或相关医学图像内容;同时用关系型数据库维护患者基础信息和简单的交互记录即可。AI-Power
- LLM的实时性:迈向毫秒级响应的AI
AI大模型应用之禅
AI大模型与大数据javapythonjavascriptkotlingolang架构人工智能
LargeLanguageModel(LLM),实时性,响应时间,微服务架构,并行处理,知识图谱,优化算法,延迟最小化1.背景介绍大型语言模型(LLM)在自然语言处理领域取得了令人瞩目的成就,展现出强大的文本生成、翻译、摘要和问答能力。然而,现有的LLM模型通常面临着响应时间较慢的问题,这限制了其在实时应用场景中的应用。例如,在聊天机器人、实时翻译和智能客服等领域,用户期望能够获得即时响应,而传统
- 玩转大语言模型——使用GraphRAG+Ollama本地构建知识图谱(完全本地化,不依赖OpenAI)
艾醒(AiXing-w)
玩转大语言模型语言模型知识图谱人工智能
系列文章目录玩转大语言模型——使用langchain和Ollama本地部署大语言模型玩转大语言模型——ollama导入huggingface下载的模型玩转大语言模型——langchain调用ollama视觉多模态语言模型玩转大语言模型——使用GraphRAG+Ollama构建知识图谱玩转大语言模型——完美解决GraphRAG构建的知识图谱全为英文的问题玩转大语言模型——配置图数据库Neo4j(含a
- 知识图谱与大语言模型:构建智能问答系统
AGI大模型与大数据研究院
大数据AI人工智能计算大数据人工智能语言模型AI大模型LLMJavaPython架构设计AgentRPA
1.背景介绍在当今的信息时代,数据的获取和处理已经成为了我们生活中不可或缺的一部分。然而,随着数据量的爆炸性增长,如何从海量的数据中提取有用的信息,进而为用户提供精准的服务,已经成为了一个重要的研究课题。在这个背景下,知识图谱和大语言模型应运而生,它们通过对数据的深度挖掘和智能处理,为构建智能问答系统提供了可能。2.核心概念与联系2.1知识图谱知识图谱是一种新型的数据结构,它以图的形式表示实体之间
- 知识图谱技术剖析
♢.*
人工智能知识图谱大数据
亲爱的小伙伴们,在求知的漫漫旅途中,若你对深度学习的奥秘、Java与Python的奇妙世界,亦或是读研论文的撰写攻略有所探寻,那不妨给我一个小小的关注吧。我会精心筹备,在未来的日子里不定期地为大家呈上这些领域的知识宝藏与实用经验分享。每一个点赞,都如同春日里的一缕阳光,给予我满满的动力与温暖,让我们在学习成长的道路上相伴而行,共同进步✨。期待你的关注与点赞哟!一、引言在当今数字化信息爆炸的时代,如
- 大模型问答机器人的智能化程度
AI大模型应用之禅
AI大模型与大数据javapythonjavascriptkotlingolang架构人工智能
大模型、问答机器人、智能化程度、自然语言处理、深度学习、Transformer模型、知识图谱、推理能力、对话系统1.背景介绍近年来,人工智能技术取得了飞速发展,特别是深度学习的兴起,为自然语言处理(NLP)领域带来了革命性的变革。其中,大模型问答机器人作为一种新型的智能交互系统,凭借其强大的语言理解和生成能力,在客服、教育、娱乐等领域展现出广阔的应用前景。问答机器人是指能够理解用户自然语言问题并给
- 知识图谱自动构建工具有哪些
Nate Hillick
知识图谱neo4j人工智能
知识图谱的自动构建工具有很多,常见的包括:Neo4j:基于图数据库的知识图谱构建工具Protégé:开源的知识图谱开发平台GoogleKnowledgeGraph:Google搜索引擎的知识图谱构建工具TopBraidComposer:基于SemanticWeb技术的知识图谱构建工具AllegroGraph:高性能图数据库,可用于构建知识图谱这仅仅是其中一部分工具,在市场上还有更多类似的工具。
- 用 Neo4j GraphRAG 工具开启你的智能应用之旅
步子哥
AGI通用人工智能neo4j人工智能
在这个人工智能飞速发展的时代,Neo4j带来了一项令人激动的创新——GraphRAG生态系统工具。这组开源工具为开发人员提供了一个全新的途径,以构建基于知识图谱的智能应用,让机器更好地理解和回应我们的查询。接下来,让我们一起探索这些工具如何帮助我们构建更智能、更准确的应用。什么是GraphRAG?GraphRAG是一种结合了检索增强生成(RAG)技术和知识图谱的解决方案。它不仅解决了大型语言模型常
- _知识图谱
大哥喝阔落
知识图谱人工智能
知识图谱(KnowledgeGraph)是一种结构化的知识表示形式,用于描述现实世界中的实体、概念及其之间的关系。它以图结构的形式组织知识,节点表示实体或概念,边表示实体之间的关系。知识图谱的核心目标是让机器能够理解和利用人类知识,从而支持智能问答、语义搜索、推荐系统等应用。1.知识图谱的定义知识图谱是一种语义网络,它通过图结构(节点和边)来表示知识:节点(Node):表示实体(如人、地点、事物)
- 基于Python的多元医疗知识图谱构建与应用研究(下)
Allen_LVyingbo
医疗高效编程研发pythonpython知识图谱健康医疗
五、基于医疗知识图谱的医疗知识图谱程序构建5.1数据层构建5.1.1数据源选择与获取在构建基于医疗知识图谱的医疗知识图谱数据层时,数据源的选择与获取至关重要。数据源的质量和丰富度直接决定了知识图谱的可靠性和实用性。医学文献是重要的数据源之一,包括学术期刊论文、医学研究报告等。这些文献包含了大量经过科学验证的医学知识,如疾病的发病机制、诊断标准、治疗方法等。可以通过专业的医学文献数据库,如PubMe
- 知识图谱自动构建:从海量非结构化数据中提取知识
AI天才研究院
大数据AI人工智能AI大模型企业级应用开发实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍1.1知识工程的演进长期以来,知识工程领域一直致力于将人类知识以结构化的方式进行表达和存储,以便于计算机系统进行理解和推理。早期的知识库系统依赖于专家手工构建,费时费力且难以扩展。随着互联网的普及和信息爆炸时代的到来,海量非结构化数据成为重要的知识来源,如何高效地从这些数据中提取知识成为一个亟待解决的问题。1.2知识图谱的兴起知识图谱作为一种大规模语义网络,能够有效地表示实体、概念及其
- 基于大语言模型构建本地个人AI助理
由数入道
人工智能语言模型自然语言处理
在构建本地专属的个人AI助理时,我们需要处理多个方面的技术需求,确保其在多模态数据处理、实时查询、灵活推理、知识图谱更新等方面具备高效性、实时性和可扩展性。以下探讨如何基于大语言模型构建一个具备全面功能的个人AI助理,涵盖知识库管理、动态推理、用户交互、实时学习和跨模态集成等关键技术。一、技术设计总体架构1.目标与需求个性化AI助理:构建一个本地专属AI助理,能够处理多种输入格式(文本、图像、音频
- 基于知识图谱的用户画像构建与应用
cooldream2009
AI技术知识图谱知识图谱人工智能
目录前言1.知识图谱在用户画像中的作用1.1数据整合与清洗1.2多维关系挖掘1.3动态更新能力1.4可解释性2.用户画像构建过程中的知识图谱应用2.1数据采集2.2知识图谱构建2.2.1实体节点构建2.2.2关系建模2.3用户画像生成2.3.1静态特征2.3.2动态特征2.3.3关系网络3.基于知识图谱的用户画像应用场景3.1精准营销3.2内容推荐3.3用户需求预测3.4风险控制结语前言随着大数据
- 深度学习-97-大语言模型LLM之基于langchain的实体记忆和知识图谱记忆
皮皮冰燃
深度学习深度学习语言模型langchain
文章目录1内存记忆Memory1.1记忆系统支持的操作1.2记忆的存储1.3记忆的查询2记忆的应用2.1设置环境变量2.2ConversationEntityMemory实体记忆2.3ConversationKGMemory知识图谱记忆2.3.1创建ConversationKGMemory2.3.2创建ConversationChain2.4ConversationBufferWindowMemo
- 再分享API形式调用Dify项目应用
福安德信息科技
大模型python人工智能大模型llmdify
大模型相关目录大模型,包括部署微调prompt/Agent应用开发、知识库增强、数据库增强、知识图谱增强、自然语言处理、多模态等大模型应用开发内容从0起步,扬帆起航。RAGOnMedicalKG:大模型结合知识图谱的RAG实现DSPy:变革式大模型应用开发最简明的Few-shotPrompt指南SemanticKernel:微软大模型开发框架——LangChain替代对话大模型Prompt是否需要
- Java 大视界 -- Java 大数据中的知识图谱构建与应用(62)
青云交
大数据新视界Java大视界大数据知识图谱信息抽取知识融合智能搜索智能推荐风险评估
亲爱的朋友们,热烈欢迎来到青云交的博客!能与诸位在此相逢,我倍感荣幸。在这飞速更迭的时代,我们都渴望一方心灵净土,而我的博客正是这样温暖的所在。这里为你呈上趣味与实用兼具的知识,也期待你毫无保留地分享独特见解,愿我们于此携手成长,共赴新程!一、欢迎加入【福利社群】点击快速加入:青云交灵犀技韵交响盛汇福利社群点击快速加入2:2024CSDN博客之星创作交流营(NEW)二、本博客的精华专栏:大数据新视
- 基于多模态信息抽取的菜品知识图谱构建 思维导图-java架构
用心去追梦
java架构开发语言
构建一个基于多模态信息抽取的菜品知识图谱,特别是在Java架构下的实现,可以按照以下结构来组织思维导图的内容。这个思维导图将帮助理解从数据获取、处理到知识图谱构建的关键步骤,并且涵盖技术选型和系统设计。思维导图结构1.项目背景知识图谱的意义提升搜索体验推荐系统优化菜品知识图谱的目标食材关联菜系分类健康饮食建议2.多模态数据收集文本数据源美食博客和论坛配方网站图像数据源社交媒体图片餐厅菜单照片视频数
- 从0到1打造企业AI知识库-课程目录
MaxCode-1
人工智能AIGC知识图谱LangchainXinference
课程名称:「从0到1打造企业AI知识库:实用指南与生产落地」课程目录第一章:AI企业知识库的前景与价值1.企业知识库的概念与意义1.1什么是企业知识库?-企业知识库的核心组成-企业知识库的类型1.2企业知识库如何赋能内部协作与创新。2.AI在知识库中的作用AI赋能的核心技术:NLP、知识图谱、大模型。AI知识库的未来趋势与行业案例。第二章:搭建企业知识库的整体规划3.从需求分析到方案设计识别业务场
- Grape-RAG
disgare
AIai
Grape-RAG传统RAG的局限性图的优点用知识图谱来呈现数据关系GraphRAG传统RAG的局限性经典的RAG架构以向量数据库(VectorDB)为核心来检索语义相似性上下文,让大语言模型(LLM)不需要重新训练就能够获取最新的知识,其工作流如下图所示:这一架构目前广泛应用于各类AI业务场景中,例如问答机器人、智能客服、私域知识库检索等等。虽然RAG通过知识增强一定程度上缓解了LLM幻觉问题,
- 知识图谱中的word2vec 技术是做什么的?
kcarly
知识图谱入门知识图谱word2vec人工智能
Word2Vec是一种将单词转换为向量表示的技术,由Google在2013年提出。这项技术的核心思想是通过大规模文本数据训练神经网络模型,从而将单词映射到低维稠密的向量空间中。这些向量能够捕捉到单词之间的语义和语法关系,使得相似或相关的单词在向量空间中彼此靠近。Word2Vec的基本原理Word2Vec主要包括两种训练模型:CBOW(ContinuousBagofWords)和Skip-gram。
- 构建知识图谱:从文本到结构化数据的转化
sagvWSRJHMNEB
知识图谱人工智能python
技术背景介绍知识图谱是一种将信息表示为实体及其相互关系的结构化数据模型,广泛用于提高数据检索和决策支持的质量。特别是在基于知识的检索增强生成(RAG)应用中,通过将非结构化文本转化为知识图谱,可以显著提升系统对复杂关系的理解和导航能力。核心原理解析构建知识图谱的核心步骤包括:信息提取和数据库存储。从文本中提取结构化信息主要依赖于大语言模型(LLM),如OpenAI的GPT-4,其能力在于解析和分类
- 基于Python的多元医疗知识图谱构建与应用研究(上)
Allen_LVyingbo
python医疗高效编程研发python知识图谱健康医疗
一、引言1.1研究背景与意义在当今数智化时代,医疗数据呈爆发式增长,如何高效管理和利用这些数据,成为提升医疗服务质量的关键。传统医疗数据管理方式存在数据孤岛、信息整合困难等问题,难以满足现代医疗对精准诊断和个性化治疗的需求。知识图谱作为一种知识表示和管理技术,为医疗领域带来了新的解决方案。它能够将海量的医疗信息以结构化、语义化的方式组织起来,揭示疾病、症状、药物、治疗方法等实体之间的复杂关系,从而
- 知识图谱语义搜索:构建智能化搜索未来
cooldream2009
AI技术知识图谱知识图谱人工智能
目录前言1.知识图谱语义搜索的基础概念1.1什么是知识图谱1.2什么是语义搜索1.3知识图谱语义搜索的结合2.知识图谱语义搜索的核心技术2.1自然语言处理技术2.2知识图谱构建与管理2.3图数据库与查询技术3.知识图谱语义搜索的应用场景3.1智能问答系统3.2个性化推荐3.3专业领域信息检索4.知识图谱语义搜索的未来展望4.1技术挑战4.2应用趋势结语前言随着信息技术的飞速发展,数据量呈现爆炸式增
- OpenSPG docker 安装教程
@comefly
NLPdockeropenspg知识图谱llm
文章目录前言自述一、OpenSPG1.介绍二、安装步骤1.安装服务端2.客户端部署前言自述我最近是想结合chatglm3-6b和知识图谱做一个垂直领域的技术规范的问答系统,过程中也遇到了很多困难,在模型微调上,在数据集收集整理上,在知识图谱的信息抽取上等等,咬咬牙,多学习就可以解决,本文主要写一下利用openspg做技术规范的信息抽取的部署安装过程。一、OpenSPG1.介绍OpenSPG是蚂蚁集
- graphrag+ollama+neo4j本地化部署可视化使用
xiaomu_347
LLM——AIGCgraphragllm
最近微软团队开源了一款数据工作流与转换工具GraphRAG,利用LLM,帮助用户从非结构化文本数据中提取结构化数据,并完成数据索引。与传统的在文本片段中,基于语义查询的RAG不同,GraphRAG从原始文本中,提取数据,构建知识图谱,并利用这些结构化数据完成RAG任务。相较于传统RAG,GraphRAG在回答全局性问题时,表现非常出色。GraphRAG|GetStarted:https://mic
- GraphRAG 本地 Ollama - 知识图谱
ericliu2017
知识图谱人工智能
欢迎来到GraphRAGLocalOllama!这个存储库是对微软的GraphRAG的激动人心的改编,旨在支持使用Ollama下载的本地模型。告别昂贵的OpenAPI模型,拥抱使用Ollama进行高效、具有成本效益的本地推理!研究论文有关GraphRAG实现的更多详细信息,请参阅GraphRAG论文。论文摘要使用检索增强生成(RAG)从外部知识源中检索相关信息,使大型语言模型(LLMs)能够回答关
- 音视频知识图谱 2022.04
关键帧Keyframe
前些时间,我在知识星球上创建了一个音视频技术社群:关键帧的音视频开发圈,在这里群友们会一起做一些打卡任务。比如:周期性地整理音视频相关的面试题,汇集一份音视频面试题集锦,你可以看看《音视频面试题集锦2022.04》。再比如:循序渐进地归纳总结音视频技术知识,绘制一幅音视频知识图谱。下面是2022.04月知识图谱新增的内容节选:1)图谱路径:**采集/音频采集/声音三要素/响度******主观计量响
- 大数据毕业设计hadoop+spark+hive知识图谱租房数据分析可视化大屏 租房推荐系统 58同城租房爬虫 房源推荐系统 房价预测系统 计算机毕业设计 机器学习 深度学习 人工智能
2401_84572577
程序员大数据hadoop人工智能
做了那么多年开发,自学了很多门编程语言,我很明白学习资源对于学一门新语言的重要性,这些年也收藏了不少的Python干货,对我来说这些东西确实已经用不到了,但对于准备自学Python的人来说,或许它就是一个宝藏,可以给你省去很多的时间和精力。别在网上瞎学了,我最近也做了一些资源的更新,只要你是我的粉丝,这期福利你都可拿走。我先来介绍一下这些东西怎么用,文末抱走。(1)Python所有方向的学习路线(
- 【笔记】自然语言处理NLP---概论
xhanZ
NLP相关
(from人文学院开设课程)目录1.自然语言处理概论1.1自然语言处理研究的意义、历史与现状1.1.1自然语言的特点1.1.2自然语言处理研究的意义1.1.3国外研究现状1.2NLP的方法、特点和规律1.2.1理性主义与经验主义1.2.2语料库语言学:经验主义研究方法1.2.3汉语语言处理的方法1.2.4基于知识图谱的深度学习1.自然语言处理概论1.1自然语言处理研究的意义、历史与现状1.1.1自
- GraphRAG入门:基本概念、应用场景及学习方法
学习中的程序媛~
学习方法
一、GraphRAG的用途是什么GraphRAG用于复杂信息分析,适合处理跨文档、有噪音或主题抽象的数据.二、GraphRAG能做什么GraphRAG能连接大量信息,回答普通难搜索难以解答的问题.她可以回答跨文档的问题,也能总结数据集的主要主题.三、GraphRAG的特点1.知识图谱提取:使用llm自动从输入文本文档中创建知识图谱,表示数据中的实体、关系和关键声明2.层次聚类使用leiden技术对
- Java实现的简单双向Map,支持重复Value
superlxw1234
java双向map
关键字:Java双向Map、DualHashBidiMap
有个需求,需要根据即时修改Map结构中的Value值,比如,将Map中所有value=V1的记录改成value=V2,key保持不变。
数据量比较大,遍历Map性能太差,这就需要根据Value先找到Key,然后去修改。
即:既要根据Key找Value,又要根据Value
- PL/SQL触发器基础及例子
百合不是茶
oracle数据库触发器PL/SQL编程
触发器的简介;
触发器的定义就是说某个条件成立的时候,触发器里面所定义的语句就会被自动的执行。因此触发器不需要人为的去调用,也不能调用。触发器和过程函数类似 过程函数必须要调用,
一个表中最多只能有12个触发器类型的,触发器和过程函数相似 触发器不需要调用直接执行,
触发时间:指明触发器何时执行,该值可取:
before:表示在数据库动作之前触发
- [时空与探索]穿越时空的一些问题
comsci
问题
我们还没有进行过任何数学形式上的证明,仅仅是一个猜想.....
这个猜想就是; 任何有质量的物体(哪怕只有一微克)都不可能穿越时空,该物体强行穿越时空的时候,物体的质量会与时空粒子产生反应,物体会变成暗物质,也就是说,任何物体穿越时空会变成暗物质..(暗物质就我的理
- easy ui datagrid上移下移一行
商人shang
js上移下移easyuidatagrid
/**
* 向上移动一行
*
* @param dg
* @param row
*/
function moveupRow(dg, row) {
var datagrid = $(dg);
var index = datagrid.datagrid("getRowIndex", row);
if (isFirstRow(dg, row)) {
- Java反射
oloz
反射
本人菜鸟,今天恰好有时间,写写博客,总结复习一下java反射方面的知识,欢迎大家探讨交流学习指教
首先看看java中的Class
package demo;
public class ClassTest {
/*先了解java中的Class*/
public static void main(String[] args) {
//任何一个类都
- springMVC 使用JSR-303 Validation验证
杨白白
springmvc
JSR-303是一个数据验证的规范,但是spring并没有对其进行实现,Hibernate Validator是实现了这一规范的,通过此这个实现来讲SpringMVC对JSR-303的支持。
JSR-303的校验是基于注解的,首先要把这些注解标记在需要验证的实体类的属性上或是其对应的get方法上。
登录需要验证类
public class Login {
@NotEmpty
- log4j
香水浓
log4j
log4j.rootCategory=DEBUG, STDOUT, DAILYFILE, HTML, DATABASE
#log4j.rootCategory=DEBUG, STDOUT, DAILYFILE, ROLLINGFILE, HTML
#console
log4j.appender.STDOUT=org.apache.log4j.ConsoleAppender
log4
- 使用ajax和history.pushState无刷新改变页面URL
agevs
jquery框架Ajaxhtml5chrome
表现
如果你使用chrome或者firefox等浏览器访问本博客、github.com、plus.google.com等网站时,细心的你会发现页面之间的点击是通过ajax异步请求的,同时页面的URL发生了了改变。并且能够很好的支持浏览器前进和后退。
是什么有这么强大的功能呢?
HTML5里引用了新的API,history.pushState和history.replaceState,就是通过
- centos中文乱码
AILIKES
centosOSssh
一、CentOS系统访问 g.cn ,发现中文乱码。
于是用以前的方式:yum -y install fonts-chinese
CentOS系统安装后,还是不能显示中文字体。我使用 gedit 编辑源码,其中文注释也为乱码。
后来,终于找到以下方法可以解决,需要两个中文支持的包:
fonts-chinese-3.02-12.
- 触发器
baalwolf
触发器
触发器(trigger):监视某种情况,并触发某种操作。
触发器创建语法四要素:1.监视地点(table) 2.监视事件(insert/update/delete) 3.触发时间(after/before) 4.触发事件(insert/update/delete)
语法:
create trigger triggerName
after/before 
- JS正则表达式的i m g
bijian1013
JavaScript正则表达式
g:表示全局(global)模式,即模式将被应用于所有字符串,而非在发现第一个匹配项时立即停止。 i:表示不区分大小写(case-insensitive)模式,即在确定匹配项时忽略模式与字符串的大小写。 m:表示
- HTML5模式和Hashbang模式
bijian1013
JavaScriptAngularJSHashbang模式HTML5模式
我们可以用$locationProvider来配置$location服务(可以采用注入的方式,就像AngularJS中其他所有东西一样)。这里provider的两个参数很有意思,介绍如下。
html5Mode
一个布尔值,标识$location服务是否运行在HTML5模式下。
ha
- [Maven学习笔记六]Maven生命周期
bit1129
maven
从mvn test的输出开始说起
当我们在user-core中执行mvn test时,执行的输出如下:
/software/devsoftware/jdk1.7.0_55/bin/java -Dmaven.home=/software/devsoftware/apache-maven-3.2.1 -Dclassworlds.conf=/software/devs
- 【Hadoop七】基于Yarn的Hadoop Map Reduce容错
bit1129
hadoop
运行于Yarn的Map Reduce作业,可能发生失败的点包括
Task Failure
Application Master Failure
Node Manager Failure
Resource Manager Failure
1. Task Failure
任务执行过程中产生的异常和JVM的意外终止会汇报给Application Master。僵死的任务也会被A
- 记一次数据推送的异常解决端口解决
ronin47
记一次数据推送的异常解决
需求:从db获取数据然后推送到B
程序开发完成,上jboss,刚开始报了很多错,逐一解决,可最后显示连接不到数据库。机房的同事说可以ping 通。
自已画了个图,逐一排除,把linux 防火墙 和 setenforce 设置最低。
service iptables stop
- 巧用视错觉-UI更有趣
brotherlamp
UIui视频ui教程ui自学ui资料
我们每个人在生活中都曾感受过视错觉(optical illusion)的魅力。
视错觉现象是双眼跟我们开的一个玩笑,而我们往往还心甘情愿地接受我们看到的假象。其实不止如此,视觉错现象的背后还有一个重要的科学原理——格式塔原理。
格式塔原理解释了人们如何以视觉方式感觉物体,以及图像的结构,视角,大小等要素是如何影响我们的视觉的。
在下面这篇文章中,我们首先会简单介绍一下格式塔原理中的基本概念,
- 线段树-poj1177-N个矩形求边长(离散化+扫描线)
bylijinnan
数据结构算法线段树
package com.ljn.base;
import java.util.Arrays;
import java.util.Comparator;
import java.util.Set;
import java.util.TreeSet;
/**
* POJ 1177 (线段树+离散化+扫描线),题目链接为http://poj.org/problem?id=1177
- HTTP协议详解
chicony
http协议
引言
- Scala设计模式
chenchao051
设计模式scala
Scala设计模式
我的话: 在国外网站上看到一篇文章,里面详细描述了很多设计模式,并且用Java及Scala两种语言描述,清晰的让我们看到各种常规的设计模式,在Scala中是如何在语言特性层面直接支持的。基于文章很nice,我利用今天的空闲时间将其翻译,希望大家能一起学习,讨论。翻译
- 安装mysql
daizj
mysql安装
安装mysql
(1)删除linux上已经安装的mysql相关库信息。rpm -e xxxxxxx --nodeps (强制删除)
执行命令rpm -qa |grep mysql 检查是否删除干净
(2)执行命令 rpm -i MySQL-server-5.5.31-2.el
- HTTP状态码大全
dcj3sjt126com
http状态码
完整的 HTTP 1.1规范说明书来自于RFC 2616,你可以在http://www.talentdigger.cn/home/link.php?url=d3d3LnJmYy1lZGl0b3Iub3JnLw%3D%3D在线查阅。HTTP 1.1的状态码被标记为新特性,因为许多浏览器只支持 HTTP 1.0。你应只把状态码发送给支持 HTTP 1.1的客户端,支持协议版本可以通过调用request
- asihttprequest上传图片
dcj3sjt126com
ASIHTTPRequest
NSURL *url =@"yourURL";
ASIFormDataRequest*currentRequest =[ASIFormDataRequest requestWithURL:url];
[currentRequest setPostFormat:ASIMultipartFormDataPostFormat];[currentRequest se
- C语言中,关键字static的作用
e200702084
C++cC#
在C语言中,关键字static有三个明显的作用:
1)在函数体,局部的static变量。生存期为程序的整个生命周期,(它存活多长时间);作用域却在函数体内(它在什么地方能被访问(空间))。
一个被声明为静态的变量在这一函数被调用过程中维持其值不变。因为它分配在静态存储区,函数调用结束后并不释放单元,但是在其它的作用域的无法访问。当再次调用这个函数时,这个局部的静态变量还存活,而且用在它的访
- win7/8使用curl
geeksun
win7
1. WIN7/8下要使用curl,需要下载curl-7.20.0-win64-ssl-sspi.zip和Win64OpenSSL_Light-1_0_2d.exe。 下载地址:
http://curl.haxx.se/download.html 请选择不带SSL的版本,否则还需要安装SSL的支持包 2. 可以给Windows增加c
- Creating a Shared Repository; Users Sharing The Repository
hongtoushizi
git
转载自:
http://www.gitguys.com/topics/creating-a-shared-repository-users-sharing-the-repository/ Commands discussed in this section:
git init –bare
git clone
git remote
git pull
git p
- Java实现字符串反转的8种或9种方法
Josh_Persistence
异或反转递归反转二分交换反转java字符串反转栈反转
注:对于第7种使用异或的方式来实现字符串的反转,如果不太看得明白的,可以参照另一篇博客:
http://josh-persistence.iteye.com/blog/2205768
/**
*
*/
package com.wsheng.aggregator.algorithm.string;
import java.util.Stack;
/**
- 代码实现任意容量倒水问题
home198979
PHP算法倒水
形象化设计模式实战 HELLO!架构 redis命令源码解析
倒水问题:有两个杯子,一个A升,一个B升,水有无限多,现要求利用这两杯子装C
- Druid datasource
zhb8015
druid
推荐大家使用数据库连接池 DruidDataSource. http://code.alibabatech.com/wiki/display/Druid/DruidDataSource DruidDataSource经过阿里巴巴数百个应用一年多生产环境运行验证,稳定可靠。 它最重要的特点是:监控、扩展和性能。 下载和Maven配置看这里: http
- 两种启动监听器ApplicationListener和ServletContextListener
spjich
javaspring框架
引言:有时候需要在项目初始化的时候进行一系列工作,比如初始化一个线程池,初始化配置文件,初始化缓存等等,这时候就需要用到启动监听器,下面分别介绍一下两种常用的项目启动监听器
ServletContextListener
特点: 依赖于sevlet容器,需要配置web.xml
使用方法:
public class StartListener implements
- JavaScript Rounding Methods of the Math object
何不笑
JavaScriptMath
The next group of methods has to do with rounding decimal values into integers. Three methods — Math.ceil(), Math.floor(), and Math.round() — handle rounding in differen