- 强化学习中策略网络模型设计与优化技巧
数字扫地僧
计算机视觉深度学习
I.引言强化学习(ReinforcementLearning,RL)是一种通过与环境交互,学习如何采取行动以最大化累积奖励的机器学习方法。策略网络(PolicyNetwork)是强化学习中一种重要的模型,它直接输出动作的概率分布或具体的动作。本篇博客将深入探讨策略网络的设计原则、优化技巧,并结合具体实例展示其应用。II.策略网络的基本概念A.策略网络的定义策略网络是一种神经网络,它接受当前状态作为
- 探索Python中的集成方法:Stacking
Echo_Wish
Python笔记Python算法python开发语言
在机器学习领域,Stacking是一种高级的集成学习方法,它通过将多个基本模型的预测结果作为新的特征输入到一个元模型中,从而提高整体模型的性能和鲁棒性。本文将深入介绍Stacking的原理、实现方式以及如何在Python中应用。什么是Stacking?Stacking,又称为堆叠泛化(StackedGeneralization),是一种模型集成方法,与Bagging和Boosting不同,它并不直
- 【Python】 Stacking: 强大的集成学习方法
音乐学家方大刚
Pythonpython集成学习开发语言
我们都找到天使了说好了心事不能偷藏着什么都一起做幸福得没话说把坏脾气变成了好沟通我们都找到天使了约好了负责对方的快乐阳光下的山坡你素描的以后怎么抄袭我脑袋想的薛凯琪《找到天使了》在机器学习中,单一模型的性能可能会受到其局限性和数据的影响。为了解决这个问题,我们可以使用集成学习(EnsembleLearning)方法。集成学习通过结合多个基模型的预测结果,来提高整体模型的准确性和稳健性。Stacki
- Stacking算法:集成学习的终极武器
civilpy
算法集成学习机器学习
Stacking算法:集成学习的终极武器在机器学习的竞技场中,集成学习方法以其卓越的性能而闻名。其中,Stacking(堆叠泛化)作为一种高级集成技术,更是被誉为“集成学习的终极武器”。本文将带你深入了解Stacking算法的原理和实现,并提供一些实战技巧和最佳实践。1.Stacking算法原理探秘Stacking算法的核心思想是训练多个不同的基模型,并将它们的预测结果作为新模型的输入特征,以此来
- 利用Python和深度学习方法实现手写数字识别的高精度解决方案——从数据预处理到模型优化的全流程解析
快撑死的鱼
Python算法精解python深度学习开发语言
利用Python和深度学习方法实现手写数字识别的高精度解决方案——从数据预处理到模型优化的全流程解析在人工智能的众多应用领域中,手写数字识别是一项经典且具有重要实际应用价值的任务。随着深度学习技术的飞速发展,通过构建和训练神经网络模型,手写数字识别的精度已经可以达到99%以上。本文将以Python为主要编程语言,结合深度学习的核心技术,详细解析手写数字识别的实现过程,并探讨如何进一步优化模型以提高
- C++ 学习需要多长时间?
c++
学习C++所需的时间因个人的学习目标、基础、学习方法和投入的时间而异。以下是一些大致的时间范围和学习阶段的参考:一、初学者阶段(0-3个月)目标:掌握C++的基本语法、数据类型、控制结构(如循环、条件语句)、函数等基础知识。学习内容:学习变量声明、数据类型(如int、float、char等)。掌握基本的输入输出操作(如cin和cout)。理解并使用循环(for、while)和条件语句(if、swi
- YOLO魔改之频率分割模块(FDM)
清风AI
YOLO算法魔改系列YOLO人工智能计算机视觉目标检测python深度学习
目标检测原理目标检测是一种将目标分割和识别相结合的图像处理技术,旨在从图像中定位并识别特定目标。深度学习方法,如FasterR-CNN和YOLO系列,已成为主流解决方案。这些方法通常采用两阶段或单阶段策略,通过卷积神经网络(CNN)提取特征并进行分类和定位。在小目标检测中,为克服分辨率低和特征不明显的问题,模型设计中会特别注重特征融合和多尺度处理,以增强对小目标的感知能力。YOLOv8基础YOLO
- 不要再走弯路了2025最全的黑客入门学习路线在这
渗透代老师
学习网络安全web安全网络python
基于入门网络安全/黑客打造的:黑客&网络安全入门&进阶学习资源包在大多数的思维里总觉得[学习]得先收集资料、学习编程、学习计算机基础,这样不是不可以,但是这样学效率太低了!你要知道网络安全是一门技术,任何技术的学习一定是以实践为主的。也就是说很多的理论知识其实是可以在实践中去验证拓展的,这样学习比起你啃原理、啃书本要好理解很多。所以想要学习网络安全选对正确的学习方法很重要,这可以帮你少走很多弯路。
- 【高考志愿】数学
大雨淅淅
程序人生高考
目录一、数学专业概述1.1学科特点1.2课程设置1.3学习方法1.4数学专业的分类二、就业前景三、填报建议四、注意事项五、数学专业排名一、数学专业概述1.1学科特点数学专业作为一门基础学科,具有高度的抽象性、逻辑性和精确性。它要求学生具备良好的数学基础、逻辑思维能力和解决问题的能力。因此,选择数学专业的学生需要有较强的数学兴趣和扎实的数学基础。1.2课程设置数学专业的课程设置通常包括数学分析、高等
- OpenLSD是一个自适应开源数据集,旨在支持逻辑综合中的多种机器学习任务。
数据集
2024-11-14,由中国科学院计算技术研究所、鹏城实验室和北京大学等联合创建OpenLSD数据集,目的为逻辑综合过程中的机器学习任务提供一个自适应的数据集生成框架。该数据集的核心研究问题是如何在逻辑综合的三个基本步骤——布尔表示、逻辑优化和技术映射中,通过机器学习方法提升效率和质量。一、研究背景:逻辑综合是电子设计自动化(EDA)流程中的关键环节,它负责将高级设计规范转化为门级网络列表。近年来
- 大模型学习方法之——大模型技术学习路线
hhaiming_
学习方法学习语言模型人工智能
“技术学习无非涵盖三个方面,理论,实践和应用**”**大模型技术爆火至今已经有两年的时间了,而且大模型技术的发展潜力也不言而喻。因此,很多人打算学习大模型,但又不知道该怎么入手,因此今天就来了解一下大模型的学习路线。丁元英说:“透视社会有三个层面,技术,制度与文化”;同样的,技术学习同样有三个层面,理论,实践和应用,三者相辅相成,缺一不可。技术的意义在于解决问题01—大模型技术学习的理论,实践
- PyTorch 深度学习实战(12):Actor-Critic 算法与策略优化
进取星辰
PyTorch深度学习实战深度学习pytorch算法
在上一篇文章中,我们介绍了强化学习的基本概念,并使用深度Q网络(DQN)解决了CartPole问题。本文将深入探讨Actor-Critic算法,这是一种结合了策略梯度(PolicyGradient)和值函数(ValueFunction)的强化学习方法。我们将使用PyTorch实现Actor-Critic算法,并应用于经典的CartPole问题。一、Actor-Critic算法基础Actor-Cri
- Blender学习方法与技巧
自动化专业爱好者
网络
以下是针对Blender零基础用户的学习教程推荐与高效学习方法总结,结合了多个优质资源整理而成,帮助快速入门:一、Blender学习方法与技巧制定学习计划与目标明确短期目标(如掌握基础操作)和长期目标(如独立完成场景建模),建议每天投入2-3小时系统学习。初期以熟悉界面、快捷键和基础工具为主,逐步过渡到建模、材质和渲染的综合应用。高效利用教程资源视频教程优先:视觉化学习更直观,推荐B站、YouTu
- 深度探索 Java 代码审计:筑牢安全防线的关键之路
阿贾克斯的黎明
javajava安全开发语言
在当今高度数字化的时代,软件安全成为了至关重要的议题。对于众多使用Java语言进行开发的程序员而言,深入掌握Java代码审计技能,无疑是守护软件安全的核心手段。本文将围绕一本涵盖Java代码审计丰富知识的书籍目录,全面剖析Java代码审计的各个关键环节以及其在CTFAWD比赛中的重要应用。一、学习经验:开启Java代码审计的智慧之门Java代码审计之路并非坦途,需要有系统的学习方法和实践经验。书籍
- Python精进系列: K-Means 聚类算法调用库函数和手动实现对比分析
进一步有进一步的欢喜
Python精进系列算法pythonkmeans
一、引言在机器学习领域,聚类分析是一种重要的无监督学习方法,用于将数据集中的样本划分为不同的组或簇,使得同一簇内的样本具有较高的相似性,而不同簇之间的样本具有较大的差异性。K-Means聚类算法是最常用的聚类算法之一,它以其简单性和高效性在数据挖掘、图像分割、模式识别等领域得到了广泛应用。本文将详细介绍K-Means聚类算法,并分别给出调用现成函数和不调用任何现成函数实现K-Means聚类的代码示
- AI笔记——语音识别
Yuki-^_^
人工智能AI人工智能笔记语音识别
摘要:语音识别(AutomaticSpeechRecognition,ASR)是人工智能领域的一项重要技术,它将人类的语音信号转换成文字。随着科技的发展,语音识别已经成为现代生活和工作中不可或缺的一部分。本文旨在介绍语音识别的基本原理、关键技术、应用场景以及未来发展趋势。一、历史与发展语音识别技术的历史可以追溯到20世纪50年代,那时的技术基于规则和模板。随着计算能力的提升和深度学习方法的出现,语
- 数据挖掘技术介绍
柒柒钏
数据挖掘数据挖掘人工智能
数据挖掘技术介绍分类聚类关联规则挖掘预测异常检测特征选择与降维文本挖掘序列模式挖掘深度学习集成学习数据挖掘(DataMining)是一种从大量数据中提取有用信息和模式的技术,旨在从数据中发现隐藏的规律、趋势或关系,从而为决策提供支持。分类定义:是一种监督学习方法,用于将数据分为不同的类别。功能:根据已标记的训练数据,学习一个模型,用于预测新数据的类别。方法:决策树、支持向量机、神经网络、逻辑回归、
- Deepseek:物理神经网络PINN入门教程
天一生水water
神经网络人工智能深度学习
一、物理信息网络(PINN)的概念与原理1.定义与来源物理信息网络(Physics-InformedNeuralNetworks,PINN)是一种将物理定律(如偏微分方程、守恒定律等)嵌入神经网络训练过程的深度学习方法。其核心思想是通过神经网络同时拟合观测数据并满足物理约束,从而解决传统数值方法难以处理的高维、噪声数据或复杂边界条件问题。来源:PINN起源于对传统数值方法局限性的改进需求(如网格生
- 手写机器学习算法系列——K-Means聚类算法(一)
木有鱼丸223
手写机器学习算法系列机器学习算法聚类
代码仓库(数字空间项目,GN可上)不想看的话,我也将代码上传到本博客中。1.聚类算法简介在数据科学和机器学习领域,聚类(Clustering)算法是一种无监督学习方法,它将相似的对象分到同一个组,而不同的对象则被分到不同的组。这种算法的主要目标是根据数据的特征进行分组,以此找出数据的内在结构。聚类算法的一个核心特点就是它并不需要预先知道数据的类别,而是通过算法自动进行分组。在实际应用中,我们常见的
- 【大模型学习】第十九章 什么是迁移学习
好多渔鱼好多
AI大模型人工智能大模型AI机器学习迁移学习
目录1.迁移学习的起源背景1.1传统机器学习的问题1.2迁移学习的提出背景2.什么是迁移学习2.1迁移学习的定义2.2生活实例解释3.技术要点与原理3.1迁移学习方法分类3.1.1基于特征的迁移学习(Feature-basedTransfer)案例说明代码示例3.1.2基于模型的迁移(Model-basedTransfer)案例说明BERT用于情感分析的例子3.1.3基于实例的迁移(Instanc
- Linux之bash常用命令
Ssaty.
linuxbashunix
第1关:linux之bash常用命令基本知识任务描述本关任务:根据基本知识点,回答一些选择题。相关知识为了完成本关任务,你需要掌握:1.Linux简单介绍2.Linux的优缺点3.操作系统介绍4.UNIX操作系统5.MINIX操作系统6.GNU计划7.POSIX标准8.程序学习方法9.为什么学习Linux10.Linux发展历史Linux简单介绍Linux核心理念:万物皆文件。Linux:是一个内
- 一文读懂强化学习:从基础到应用
LHTZ
算法时序数据库大数据数据库架构动态规划
强化学习是什么强化学习是人工智能领域的一种学习方法,简单来说,就是让一个智能体(比如机器人、电脑程序)在一个环境里不断尝试各种行为。每次行为后,环境会给智能体一个奖励或者惩罚信号,智能体根据这个信号来调整自己的行为,目的是让自己在未来能获得更多奖励。就像训练小狗,小狗做对了动作(比如坐下),就给它零食(奖励),做错了就没有零食(惩罚),慢慢地小狗就知道怎么做能得到更多零食,也就是学会了最优行为。强
- QwQ-32B企业级本地部署:结合XInference与Open-WebUI使用
大势下的牛马
搭建本地gptRAG知识库人工智能QwQ-32B
QwQ-32B是阿里巴巴Qwen团队推出的一款推理模型,拥有320亿参数,基于Transformer架构,采用大规模强化学习方法训练而成。它在数学推理、编程等复杂问题解决任务上表现出色,性能可媲美拥有6710亿参数的DeepSeek-R1。QwQ-32B在多个基准测试中表现出色,例如在AIME24基准上,其数学问题解决能力得分达到79.5,超过OpenAI的o1-mini。它在LiveBench、
- 深度学习核心技术深度解析
月落星还在
深度学习深度学习人工智能
一、深度学习的本质与核心思想定义:通过多层非线性变换,自动学习数据层次化表征的机器学习方法核心突破:表征学习:自动发现数据的内在规律,无需人工设计特征端到端学习:直接从原始输入到最终输出,消除中间环节的信息损失分布式表示:通过神经元激活模式的组合,指数级提升表达能力数学本质:f(x)=WLσ(WL−1σ(...σ(W1x+b1)...)+bL−1)+bLf(x)=W_{L}σ(W_{L-1}σ(.
- 深度学习/机器学习入门基础数学知识整理(一):线性代数基础,矩阵,范数等
chljerry_mouse
线性代数深度学习机器学习
前面大概有2年时间,利用业余时间断断续续写了一个机器学习方法系列,和深度学习方法系列,还有一个三十分钟理解系列(一些趣味知识);新的一年开始了,今年给自己定的学习目标——以补齐基础理论为重点,研究一些基础课题;同时逐步继续写上述三个系列的文章。最近越来越多的研究工作聚焦研究多层神经网络的原理,本质,我相信深度学习并不是无法掌控的“炼金术”,而是真真实实有理论保证的理论体系;本篇打算摘录整理一些最最
- KMeans实战——聚类和轮廓系数评估啤酒数据集
巷955
机器学习人工智能
原理:在数据分析和机器学习中,聚类是一种常用的无监督学习方法,用于将数据集中的样本划分为若干个簇,使得同一簇内的样本相似度较高,而不同簇之间的样本相似度较低。KMeans算法是其中最常用的聚类算法之一。本文将介绍如何使用KMeans算法对啤酒数据集进行聚类,并使用轮廓系数(SilhouetteScore)来评估聚类结果的质量。1.数据准备首先,我们需要导入必要的库并加载数据集。本文使用的数据集是一
- 情感识别(Emotion Recognition)
路野yue
人工智能自然语言处理
情感识别(EmotionRecognition)是通过分析人类的多模态数据(如面部表情、语音、文本等)来识别和理解其情感状态的技术。它在人机交互、心理健康、市场分析等领域有广泛应用。情感识别的主要方法1.基于面部表情的情感识别方法:通过分析面部特征(如眼睛、嘴巴、眉毛等)来识别情感。技术:传统方法:使用特征提取(如Gabor滤波器、LBP)和分类器(如SVM)。深度学习方法:使用卷积神经网络(CN
- cornell grasp data 康奈尔大学抓取数据集 百度云
工科pai
深度学习自主抓取康奈尔抓取数据集自主抓取
国内下载较慢,康奈尔大学抓取数据集分享,给有用的人。科研之路道阻且长,互行方便。康奈尔大学抓取数据集是基于深度学习方法实现机器人自主抓取的必备数据集,直接推动了机器人自主抓取的发展。目前先进的基于视觉和机器人抓取方法都是在该数据集上训练过。该数据集共十组,每组100个物体,共计1000个物体,不仅包含物体的图像,还包含物体的抓取位姿。下载链接:链接:https://pan.baidu.com/s/
- 基于PyTorch的深度学习——机器学习1
Wis4e
深度学习机器学习pytorch
监督学习是最常见的一种机器学习类型,其任务的特点就是给定学习目标,这个学习目标又称标签、标注或实际值等,整个学习过程就是围绕如何使预测与目标更接近而来的。近些年,随着深度学习的发展,分类除传统的二分类、多分类、多标签分类之外,也出现了一些新内容,如目标检测、目标识别、图像分割等监督学习的重要内容半监督学习是监督学习与无监督学习相结合的一种学习方法。半监督学习使用大量的未标记数据,同时由部分使用标记
- 点云语义分割:PointNet++在S3DIS数据集上的训练
完美代码
3dneo4j点云
点云语义分割:PointNet++在S3DIS数据集上的训练点云语义分割是计算机视觉领域的一个重要任务,旨在将点云数据中的每个点分配给其对应的语义类别。PointNet++是一种流行的深度学习方法,可用于处理点云数据,并在各种任务中取得了良好的性能。在本文中,我们将探讨如何使用PointNet++模型在S3DIS数据集上进行训练,并提供相应的源代码。数据集介绍S3DIS数据集是一个常用的用于室内场
- 怎么样才能成为专业的程序员?
cocos2d-x小菜
编程PHP
如何要想成为一名专业的程序员?仅仅会写代码是不够的。从团队合作去解决问题到版本控制,你还得具备其他关键技能的工具包。当我们询问相关的专业开发人员,那些必备的关键技能都是什么的时候,下面是我们了解到的情况。
关于如何学习代码,各种声音很多,然后很多人就被误导为成为专业开发人员懂得一门编程语言就够了?!呵呵,就像其他工作一样,光会一个技能那是远远不够的。如果你想要成为
- java web开发 高并发处理
BreakingBad
javaWeb并发开发处理高
java处理高并发高负载类网站中数据库的设计方法(java教程,java处理大量数据,java高负载数据) 一:高并发高负载类网站关注点之数据库 没错,首先是数据库,这是大多数应用所面临的首个SPOF。尤其是Web2.0的应用,数据库的响应是首先要解决的。 一般来说MySQL是最常用的,可能最初是一个mysql主机,当数据增加到100万以上,那么,MySQL的效能急剧下降。常用的优化措施是M-S(
- mysql批量更新
ekian
mysql
mysql更新优化:
一版的更新的话都是采用update set的方式,但是如果需要批量更新的话,只能for循环的执行更新。或者采用executeBatch的方式,执行更新。无论哪种方式,性能都不见得多好。
三千多条的更新,需要3分多钟。
查询了批量更新的优化,有说replace into的方式,即:
replace into tableName(id,status) values
- 微软BI(3)
18289753290
微软BI SSIS
1)
Q:该列违反了完整性约束错误;已获得 OLE DB 记录。源:“Microsoft SQL Server Native Client 11.0” Hresult: 0x80004005 说明:“不能将值 NULL 插入列 'FZCHID',表 'JRB_EnterpriseCredit.dbo.QYFZCH';列不允许有 Null 值。INSERT 失败。”。
A:一般这类问题的存在是
- Java中的List
g21121
java
List是一个有序的 collection(也称为序列)。此接口的用户可以对列表中每个元素的插入位置进行精确地控制。用户可以根据元素的整数索引(在列表中的位置)访问元素,并搜索列表中的元素。
与 set 不同,列表通常允许重复
- 读书笔记
永夜-极光
读书笔记
1. K是一家加工厂,需要采购原材料,有A,B,C,D 4家供应商,其中A给出的价格最低,性价比最高,那么假如你是这家企业的采购经理,你会如何决策?
传统决策: A:100%订单 B,C,D:0%
&nbs
- centos 安装 Codeblocks
随便小屋
codeblocks
1.安装gcc,需要c和c++两部分,默认安装下,CentOS不安装编译器的,在终端输入以下命令即可yum install gccyum install gcc-c++
2.安装gtk2-devel,因为默认已经安装了正式产品需要的支持库,但是没有安装开发所需要的文档.yum install gtk2*
3. 安装wxGTK
yum search w
- 23种设计模式的形象比喻
aijuans
设计模式
1、ABSTRACT FACTORY—追MM少不了请吃饭了,麦当劳的鸡翅和肯德基的鸡翅都是MM爱吃的东西,虽然口味有所不同,但不管你带MM去麦当劳或肯德基,只管向服务员说“来四个鸡翅”就行了。麦当劳和肯德基就是生产鸡翅的Factory 工厂模式:客户类和工厂类分开。消费者任何时候需要某种产品,只需向工厂请求即可。消费者无须修改就可以接纳新产品。缺点是当产品修改时,工厂类也要做相应的修改。如:
- 开发管理 CheckLists
aoyouzi
开发管理 CheckLists
开发管理 CheckLists(23) -使项目组度过完整的生命周期
开发管理 CheckLists(22) -组织项目资源
开发管理 CheckLists(21) -控制项目的范围开发管理 CheckLists(20) -项目利益相关者责任开发管理 CheckLists(19) -选择合适的团队成员开发管理 CheckLists(18) -敏捷开发 Scrum Master 工作开发管理 C
- js实现切换
百合不是茶
JavaScript栏目切换
js主要功能之一就是实现页面的特效,窗体的切换可以减少页面的大小,被门户网站大量应用思路:
1,先将要显示的设置为display:bisible 否则设为none
2,设置栏目的id ,js获取栏目的id,如果id为Null就设置为显示
3,判断js获取的id名字;再设置是否显示
代码实现:
html代码:
<di
- 周鸿祎在360新员工入职培训上的讲话
bijian1013
感悟项目管理人生职场
这篇文章也是最近偶尔看到的,考虑到原博客发布者可能将其删除等原因,也更方便个人查找,特将原文拷贝再发布的。“学东西是为自己的,不要整天以混的姿态来跟公司博弈,就算是混,我觉得你要是能在混的时间里,收获一些别的有利于人生发展的东西,也是不错的,看你怎么把握了”,看了之后,对这句话记忆犹新。 &
- 前端Web开发的页面效果
Bill_chen
htmlWebMicrosoft
1.IE6下png图片的透明显示:
<img src="图片地址" border="0" style="Filter.Alpha(Opacity)=数值(100),style=数值(3)"/>
或在<head></head>间加一段JS代码让透明png图片正常显示。
2.<li>标
- 【JVM五】老年代垃圾回收:并发标记清理GC(CMS GC)
bit1129
垃圾回收
CMS概述
并发标记清理垃圾回收(Concurrent Mark and Sweep GC)算法的主要目标是在GC过程中,减少暂停用户线程的次数以及在不得不暂停用户线程的请夸功能,尽可能短的暂停用户线程的时间。这对于交互式应用,比如web应用来说,是非常重要的。
CMS垃圾回收针对新生代和老年代采用不同的策略。相比同吞吐量垃圾回收,它要复杂的多。吞吐量垃圾回收在执
- Struts2技术总结
白糖_
struts2
必备jar文件
早在struts2.0.*的时候,struts2的必备jar包需要如下几个:
commons-logging-*.jar Apache旗下commons项目的log日志包
freemarker-*.jar  
- Jquery easyui layout应用注意事项
bozch
jquery浏览器easyuilayout
在jquery easyui中提供了easyui-layout布局,他的布局比较局限,类似java中GUI的border布局。下面对其使用注意事项作简要介绍:
如果在现有的工程中前台界面均应用了jquery easyui,那么在布局的时候最好应用jquery eaysui的layout布局,否则在表单页面(编辑、查看、添加等等)在不同的浏览器会出
- java-拷贝特殊链表:有一个特殊的链表,其中每个节点不但有指向下一个节点的指针pNext,还有一个指向链表中任意节点的指针pRand,如何拷贝这个特殊链表?
bylijinnan
java
public class CopySpecialLinkedList {
/**
* 题目:有一个特殊的链表,其中每个节点不但有指向下一个节点的指针pNext,还有一个指向链表中任意节点的指针pRand,如何拷贝这个特殊链表?
拷贝pNext指针非常容易,所以题目的难点是如何拷贝pRand指针。
假设原来链表为A1 -> A2 ->... -> An,新拷贝
- color
Chen.H
JavaScripthtmlcss
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"> <HTML> <HEAD>&nbs
- [信息与战争]移动通讯与网络
comsci
网络
两个坚持:手机的电池必须可以取下来
光纤不能够入户,只能够到楼宇
建议大家找这本书看看:<&
- oracle flashback query(闪回查询)
daizj
oracleflashback queryflashback table
在Oracle 10g中,Flash back家族分为以下成员:
Flashback Database
Flashback Drop
Flashback Table
Flashback Query(分Flashback Query,Flashback Version Query,Flashback Transaction Query)
下面介绍一下Flashback Drop 和Flas
- zeus持久层DAO单元测试
deng520159
单元测试
zeus代码测试正紧张进行中,但由于工作比较忙,但速度比较慢.现在已经完成读写分离单元测试了,现在把几种情况单元测试的例子发出来,希望有人能进出意见,让它走下去.
本文是zeus的dao单元测试:
1.单元测试直接上代码
package com.dengliang.zeus.webdemo.test;
import org.junit.Test;
import o
- C语言学习三printf函数和scanf函数学习
dcj3sjt126com
cprintfscanflanguage
printf函数
/*
2013年3月10日20:42:32
地点:北京潘家园
功能:
目的:
测试%x %X %#x %#X的用法
*/
# include <stdio.h>
int main(void)
{
printf("哈哈!\n"); // \n表示换行
int i = 10;
printf
- 那你为什么小时候不好好读书?
dcj3sjt126com
life
dady, 我今天捡到了十块钱, 不过我还给那个人了
good girl! 那个人有没有和你讲thank you啊
没有啦....他拉我的耳朵我才把钱还给他的, 他哪里会和我讲thank you
爸爸, 如果地上有一张5块一张10块你拿哪一张呢....
当然是拿十块的咯...
爸爸你很笨的, 你不会两张都拿
爸爸为什么上个月那个人来跟你讨钱, 你告诉他没
- iptables开放端口
Fanyucai
linuxiptables端口
1,找到配置文件
vi /etc/sysconfig/iptables
2,添加端口开放,增加一行,开放18081端口
-A INPUT -m state --state NEW -m tcp -p tcp --dport 18081 -j ACCEPT
3,保存
ESC
:wq!
4,重启服务
service iptables
- Ehcache(05)——缓存的查询
234390216
排序ehcache统计query
缓存的查询
目录
1. 使Cache可查询
1.1 基于Xml配置
1.2 基于代码的配置
2 指定可搜索的属性
2.1 可查询属性类型
2.2 &
- 通过hashset找到数组中重复的元素
jackyrong
hashset
如何在hashset中快速找到重复的元素呢?方法很多,下面是其中一个办法:
int[] array = {1,1,2,3,4,5,6,7,8,8};
Set<Integer> set = new HashSet<Integer>();
for(int i = 0
- 使用ajax和window.history.pushState无刷新改变页面内容和地址栏URL
lanrikey
history
后退时关闭当前页面
<script type="text/javascript">
jQuery(document).ready(function ($) {
if (window.history && window.history.pushState) {
- 应用程序的通信成本
netkiller.github.com
虚拟机应用服务器陈景峰netkillerneo
应用程序的通信成本
什么是通信
一个程序中两个以上功能相互传递信号或数据叫做通信。
什么是成本
这是是指时间成本与空间成本。 时间就是传递数据所花费的时间。空间是指传递过程耗费容量大小。
都有哪些通信方式
全局变量
线程间通信
共享内存
共享文件
管道
Socket
硬件(串口,USB) 等等
全局变量
全局变量是成本最低通信方法,通过设置
- 一维数组与二维数组的声明与定义
恋洁e生
二维数组一维数组定义声明初始化
/** * */ package test20111005; /** * @author FlyingFire * @date:2011-11-18 上午04:33:36 * @author :代码整理 * @introduce :一维数组与二维数组的初始化 *summary: */ public c
- Spring Mybatis独立事务配置
toknowme
mybatis
在项目中有很多地方会使用到独立事务,下面以获取主键为例
(1)修改配置文件spring-mybatis.xml <!-- 开启事务支持 --> <tx:annotation-driven transaction-manager="transactionManager" /> &n
- 更新Anadroid SDK Tooks之后,Eclipse提示No update were found
xp9802
eclipse
使用Android SDK Manager 更新了Anadroid SDK Tooks 之后,
打开eclipse提示 This Android SDK requires Android Developer Toolkit version 23.0.0 or above, 点击Check for Updates
检测一会后提示 No update were found