- 自然语言处理系列四十》条件随机场CRF》CRF开源工具实战
陈敬雷-充电了么-CEO兼CTO
自然语言处理人工智能aipython深度学习机器人机器学习
注:此文章内容均节选自充电了么创始人,CEO兼CTO陈敬雷老师的新书《自然语言处理原理与实战》(人工智能科学与技术丛书)【陈敬雷编著】【清华大学出版社】文章目录自然语言处理系列四十条件随机场(CRF)开源工具实战新词发现与短语提取总结自然语言处理系列四十条件随机场(CRF)开源工具实战目前条件随机场最流行的开源工具是CRF++。CRF++工具包最早是针对序列数据分析提出的,是一个可用于分词/连续数
- 【2018-10-02】条件随机场
BigBigFlower
条件随机场:给定随机变量x条件下,随机变量y的马尔科夫随机场。设X和Y是随机变量,P(Y|X)是在给定X的条件下Y的条件概率分布,若随机变量Y构成一个由无向图G=(V,E)表示的马尔科夫随机场,即满足马尔科夫性:w~v(与v连接的所有w)线性链条件随机场线性链条件随机场的参数形式:tk边上的特征函数,sl节点上的特征函数条件随机场的概率计算问题前向-后向算法定义前向向量:递推公式:定义后向向量:前
- 机器学习---概率图模型(隐马尔可夫模型、马尔可夫随机场、条件随机场)
三月七꧁ ꧂
机器学习机器学习人工智能
1.隐马尔可夫模型机器学习最重要的任务是根据已观察到的证据(例如训练样本)对感兴趣的未知变量(例如类别标记)进行估计和推测。概率模型(probabilisticmodel)提供了一种描述框架,将描述任务归结为计算变量的概率分布,在概率模型中,利用已知的变量推测未知变量的分布称为“推断(inference)”,其核心在于基于可观测的变量推测出未知变量的条件分布。生成式:计算联合分布(,,),判别式:
- NLP任务之Named Entity Recognition
sunshine2853
自然语言处理人工智能深度学习
深度学习的实现方法:双向长短期记忆网络(BiLSTM):BiLSTM是一种循环神经网络(RNN)的变体,能够捕捉序列数据中的长期依赖关系。在NER任务中,BiLSTM能有效地处理文本序列,捕捉前后文本的依赖关系。条件随机场(CRF):CRF经常与BiLSTM结合使用,形成BiLSTM-CRF模型。CRF层能够在序列标注任务中提供额外的约束,帮助模型更准确地预测实体标签。变压器(Transforme
- CRF条件随机场学习记录
V丶Chao
深度学习安全研究-威胁情报学习
阅读建议仔细阅读书[1]对应的序列标注章节,理解该方法面向的问题以及相关背景,然后理解基础的概念。引言威胁情报挖掘的相关论文中,均涉及到两部分任务:命名实体识别(NamedEntityRecognition,NER)和关系抽取,大多数网安实现NER的方法,采用比较多的方法包含:BiLstm+CRF或者Bert+CRF。其中条件随机场(conditionalrandomfields,CRF),这个模
- Deeplab系列语义分割模型
CPones
计算机视觉深度学习神经网络
目录一、网络模型1.deeplabv12.deeplabv23.deeplabv34.deeplabv3+二、空洞卷积三、代码实现总结一、网络模型1.deeplabv1深度卷积神经网络(DCNN)和条件随机场(CRF)相结合来解决像素级分类问题,最后一层的CRF提高模型捕捉细节和边缘分割的能力,对于大量使用最大池化和下采样导致分辨率下降的问题,通过空洞卷积来扩大感受野。2.deeplabv2ASP
- NLP系列学习:CRF条件随机场(1)
云时之间
大家好,今天让我们来看看条件随机场,条件随机场是一项大内容,在中文分词里广泛应用,因为我们在之前的文章里将概率图模型和基本的形式语言知识有所了解,当我们现在再去学习条件随机场会容易比较多(在动笔写这篇文章前我也翻阅了很多的博客,发现很多博主上来就讲一大堆核心公式,而之前的铺垫知识都很少提,我觉得这不太好,会让很多人一开始就懵).而我希望在我的这几篇文章尽可能的减少单纯理论知识的复述,而是通过一些实
- 【机器学习】条件随机场
十年一梦实验室
机器学习人工智能
一、马尔可夫随机场1.1概率图模型什么是有向图模型和无向图模型?https://www.jianshu.com/p/dabbc78471d7团、极大团、最大团-简书(jianshu.com)1.2马尔可夫随机场二、条件随机场概述2.1条件随机场简介条件随机场(ConditionalRandomField,简称CRF)是一种用于序列标注(sequencelabeling)的概率模型。它是马尔可夫随机
- 图像分割deeplab系列
TechMasterPlus
图像分割计算机视觉深度学习人工智能
DeepLab系列是谷歌团队提出的一系列语义分割算法。DeepLabv1于2014年推出,并在PASCALVOC2012数据集上取得了分割任务第二名的成绩,随后2017到2018年又相继推出了DeepLabv2,DeepLabv3以及DeepLabv3+。DeepLabv1的两个创新点是空洞卷积(AtrosConvolution)和基于全连接条件随机场(FullyConnectedCRF)。Dee
- 大创项目推荐 深度学习实现语义分割算法系统 - 机器视觉
laafeer
python
文章目录1前言2概念介绍2.1什么是图像语义分割3条件随机场的深度学习模型3\.1多尺度特征融合4语义分割开发过程4.1建立4.2下载CamVid数据集4.3加载CamVid图像4.4加载CamVid像素标签图像5PyTorch实现语义分割5.1数据集准备5.2训练基准模型5.3损失函数5.4归一化层5.5数据增强5.6实现效果6最后1前言优质竞赛项目系列,今天要分享的是基于深度学习实现语义分割算
- 工智能基础知识总结--什么是CRF
北航程序员小C
机器学习专栏深度学习专栏人工智能学习专栏机器学习人工智能深度学习神经网络自然语言处理
什么是CRFCRF是给定随机变量X的条件下,随机变量Y的马尔科夫随机场(概率无向图)。这里主要介绍在线性链上的特殊的条件随机场,称为线性链条件随机场,可用于序列标注等问题。线性链条件随机场如下图所示,输出变量仅与输入变量以及相邻输出变量有连线。CRF的参数化表示CRF通常存在两类特征函数,第一类特征函数是定义在边上的特征函数,称为转移函数,依赖于当前和前一个位置;第二类特征函数是定义在结点的特征函
- 软著项目推荐 深度学习实现语义分割算法系统 - 机器视觉
iuerfee
python
文章目录1前言2概念介绍2.1什么是图像语义分割3条件随机场的深度学习模型3\.1多尺度特征融合4语义分割开发过程4.1建立4.2下载CamVid数据集4.3加载CamVid图像4.4加载CamVid像素标签图像5PyTorch实现语义分割5.1数据集准备5.2训练基准模型5.3损失函数5.4归一化层5.5数据增强5.6实现效果6最后1前言优质竞赛项目系列,今天要分享的是基于深度学习实现语义分割算
- 深度学习实现语义分割算法系统 - 机器视觉 计算机竞赛
Mr.D学长
pythonjava
文章目录1前言2概念介绍2.1什么是图像语义分割3条件随机场的深度学习模型3\.1多尺度特征融合4语义分割开发过程4.1建立4.2下载CamVid数据集4.3加载CamVid图像4.4加载CamVid像素标签图像5PyTorch实现语义分割5.1数据集准备5.2训练基准模型5.3损失函数5.4归一化层5.5数据增强5.6实现效果6最后1前言优质竞赛项目系列,今天要分享的是基于深度学习实现语义分割算
- HanLP《自然语言处理入门》笔记--6.条件随机场与序列标注
mantchs
NLP自然语言处理机器学习nlp
文章目录6.条件随机场与序列标注6.1机器学习的模型谱系6.2条件随机场6.3条件随机场工具包6.4HanLP中的CRF++API6.5GitHub笔记转载于GitHub项目:https://github.com/NLP-LOVE/Introduction-NLP6.条件随机场与序列标注本章介绍一种新的序列标注模型条件随机场。这种模型与感知机同属结构化学习大家族,但性能比感知机还要强大。为了厘清该
- 自然语言处理相关词条
beck_zhou
算法研究(数据挖掘机器学习自然语言深度学习搜索引擎)自然语言处理语言
NLP领域自然语言处理计算语言学自然语言理解自然语言生成机器翻译文本分类语音识别语音合成中文分词信息检索信息抽取句法分析问答系统自动摘要拼写检查统计机器翻译[编辑]NLP专题隐马尔科夫模型最大熵模型条件随机场数学之美支持向量机机器学习SRILMMoses知网IRSTLMNLTK[编辑]NLP人物冯志伟俞士汶董振东黄昌宁黄曾阳周明姚天顺刘群宗成庆赵铁军詹卫东常宝宝刘挺王海峰哈工大中文信息处理人物谱中
- 强化学习——基于机器学习_周志华
Pandy Bright
机器学习人工智能支持向量机神经网络深度学习算法
上篇主要介绍了概率图模型,首先从生成式模型与判别式模型的定义出发,引出了概率图模型的基本概念,即利用图结构来表达变量之间的依赖关系;接着分别介绍了隐马尔可夫模型、马尔可夫随机场、条件随机场、精确推断方法以及LDA话题模型:HMM主要围绕着评估/解码/学习这三个实际问题展开论述;MRF基于团和势函数的概念来定义联合概率分布;CRF引入两种特征函数对状态序列进行评价打分;变量消去与信念传播在给定联合概
- deepar,传统概率模型如何和深度学习结合的?
wangmarkqi
深度学习人工智能
由于是在不会打公式,所以只能白话说下自己的认识.深度学习和统计领域一些知识的结合,比如条件随机场crf,再比如这个deepar,都是在损失函数上做文章.deepar预测的不是数据本身,而是数据分布的参数.比如模型预测出价格时间序列的均值和方差,假设分布是正态分布,那么损失函数怎么构造了?deepar预测的不是一个时间点,比如预测7天,那么每天都会预测出一个均值和方差,这一共就是7组模型参数,我们需
- 条件随机场之浅出
杨天超
NLP机器学习
1.随机场当给每个位置中,按照某种分布随机赋予相空间(值空间)的值,其全体就叫做随机场。简单说就是给定一些候选值,然后随机的把这些候选值填入到每个位置。2.概率图模型概率图模型就是用图来表示变量概率的依赖关系,如下图所示我们看到概率图模型主要分为有向图模型和无向图模型。有向图模型如我们之前所介绍过的贝叶斯网络和隐马尔科夫模型;无向图网络如马尔科夫随机场、条件随机场等;3.马尔科夫随机场马尔科夫随机
- 竞赛选题 深度学习实现语义分割算法系统 - 机器视觉
laafeer
python
文章目录1前言2概念介绍2.1什么是图像语义分割3条件随机场的深度学习模型3\.1多尺度特征融合4语义分割开发过程4.1建立4.2下载CamVid数据集4.3加载CamVid图像4.4加载CamVid像素标签图像5PyTorch实现语义分割5.1数据集准备5.2训练基准模型5.3损失函数5.4归一化层5.5数据增强5.6实现效果6最后1前言优质竞赛项目系列,今天要分享的是基于深度学习实现语义分割算
- Task2 bayes_plus
酱油啊_
1.相关概念判别模型:在机器学习领域判别模型是一种对未知数据y与已知数据x之间关系进行建模的方法。判别模型是一种基于概率理论的方法。已知输入变量x,判别模型通过构建条件概率分布P(y|x)预测y。常见的基于判别模型算法有逻辑回归、线性回归、支持向量机、提升方法、条件随机场、人工神经网络、随机森林、感知器举例:要确定一个瓜是好瓜还是坏瓜,用判别模型的方法是从历史数据中学习到模型,然后通过提取这个瓜的
- 第十七章 条件随机场
小酒馆燃着灯
机器学习手写AI深度学习机器学习
文章目录导读概念符号表IOB标记概率无向图模型MRF的因子分解团与最大团有向图模型条件随机场线性链条件随机场特征函数对数线性模型参数化形式简化形式矩阵形式概率计算导读条件随机场是给定一组输入随机变量的条件下另一组输出随机变量的条件概率分布模型,其特点是假设输出随机变量构成马尔可夫随机场。注意这里条件,随机场的对应。整个这一章的介绍思路,和前一章有点像,尤其是学习算法部分,和HMM比主要增加了特征函
- 【深度估计】单目深度估计
暖焱
3D计算机视觉计算机视觉人工智能
文章目录什么是深度估计?什么是视差深度估计与三维重建单目深度估计研究历程单目深度估计方法传统方法基于线索线性透视聚焦/散焦度天气散射阴影纹理遮挡高度运动线索基于物体自身运动基于摄像机的运动基于机器学习参数学习方法开创性工作改进加入语义信息条件随机场(ConditionalRandomField,CRF)非参数学习方法第一个里程的工作进一步完善基于多帧其他非参数学习方法深度学习方法基于有监督的深度学
- Coding-and-Paper-Letter(十八)
G小调的Qing歌
资源整理。这一期Coding内容有点多,所以将论文单独拆成另一篇。Coding:1.利用ggplot2做轨迹方向可视化,从仓库名称看,应该是某次组会的报告。SpatiotemporalRBGUgroupmeetingSep20182.R语言包gstat,比较出名的地统计学的R包,可以提供IDW,多种Kriging的空间插值。gstat3.百度研究院的开源项目NCRF,利用神经网络和条件随机场预测了
- UCAS - AI学院 - 自然语言处理专项课 - 第6讲 - 课程笔记
支锦铭
UCAS-课程笔记人工智能自然语言处理
UCAS-AI学院-自然语言处理专项课-第6讲-课程笔记隐马尔可夫模型与条件随机场马尔可夫模型隐马尔可夫模型隐马尔可夫模型的应用条件随机场及其应用隐马尔可夫模型与条件随机场马尔可夫模型马尔可夫模型描述:如果一个系统有NNN个状态SiS_iSi,随着时间的推移,该系统从某一个状态转移到另一个状态。如果ttt时刻的状态变量为qtq_tqt,则ttt时刻状态值为SjS_jSj的概率取决于前面所有时刻的状
- NBT:快准全!geNomad——宏病毒组鉴定新工具
SHANGHAILINGEN
测序组学
期刊:naturebiotechnology影响因子:46.9发表时间:2023年9月在测序数据中识别可移动遗传元件对了解其多样性、生态学、生物技术应用和对公共健康的影响至关重要。本研究开发了geNomad——可同时识别和注释测序数据中的质粒和病毒序列。geNomad使用227897个标记蛋白图谱的数据集来提供病毒基因组的功能基因注释和分类匹配。geNomad还使用条件随机场模型高精度检测整合到宿
- 条件随机场(Conditional Random Fields, CRF)
静夜寒风
条件随机场(ConditionalRandomFields,CRF)本文翻译自英文博客,原文地址:https://medium.com/ml2vec/overview-of-conditional-random-fields-68a2a20fa541概要CRF是一个判别模型,通常用于序列预测任务。其核心思想是:结合已经预测出的标签进行待预测信息的推测,从而提高模型的预测能力。本文从以下几点介绍CR
- 隐马尔可夫(HMM)/感知机/条件随机场(CRF)----词性标注
mantch
笔记转载于GitHub项目:https://github.com/NLP-LOVE/Introduction-NLP7.词性标注7.1词性标注概述什么是词性在语言学上,词性(Par-Of-Speech,Pos)指的是单词的语法分类,也称为词类。同一个类别的词语具有相似的语法性质,所有词性的集合称为词性标注集。不同的语料库采用了不同的词性标注集,一般都含有形容词、动词、名词等常见词性。下图就是Han
- CRF(条件随机场)
gaaraZH
CRF(条件随机场)构建步骤为了建一个条件随机场,我们首先要定义一个特征函数集,每个特征函数都以整个句子s,当前位置i,位置i和i-1的标签为输入。然后为每一个特征函数赋予一个权重,然后针对每一个标注序列l,对所有的特征函数加权求和,必要的话,可以把求和的值转化为一个概率值。用词性标注问题解释CRF给定一个句子s,比如:“我在公园看到一只猫”,正常标注词性的结果如下:“我”:名词“在”:介词“公园
- 梯度下降参数不收敛_数据分析|梯度下降算法
weixin_39622891
梯度下降参数不收敛
OX00统计学习三要素统计学习三要素:模型、策略、算法模型(=假设空间=所有备选模型):决策函数(y=f(x)),条件概率分布,两种形式(一种是判别式模型,一种是生成式模型)策略:确定标准,决定最优标准最重要是确定损失函数:测试值与真实值之间差别的惩罚。算法:如何选择最优模型;OX01常见的最优化算法判别模型:感知机,k近邻,决策树,逻辑回归,支持向量机,条件随机场,最大熵模型。生成模型:朴素贝叶
- 2023年显著性检测论文及代码汇总
看到我请叫我去学java吖
计算机视觉人工智能深度学习
AAAILeNo:AdversarialRobustSalientObjectDetectionNetworkswithLearnableNoiseAbstacrt:目前很少有SOD模型对人类视觉注意力难以察觉的对抗性攻击具有鲁棒性。先前的鲁棒显著性ROSA对预分割的超像素进行重组,通过密集连接的条件随机场CRF对粗糙的显著性图进行细化。与先前工作中依赖预处理和后处理的ROSA不同,本文提出一种轻
- ViewController添加button按钮解析。(翻译)
张亚雄
c
<div class="it610-blog-content-contain" style="font-size: 14px"></div>// ViewController.m
// Reservation software
//
// Created by 张亚雄 on 15/6/2.
- mongoDB 简单的增删改查
开窍的石头
mongodb
在上一篇文章中我们已经讲了mongodb怎么安装和数据库/表的创建。在这里我们讲mongoDB的数据库操作
在mongo中对于不存在的表当你用db.表名 他会自动统计
下边用到的user是表明,db代表的是数据库
添加(insert):
- log4j配置
0624chenhong
log4j
1) 新建java项目
2) 导入jar包,项目右击,properties—java build path—libraries—Add External jar,加入log4j.jar包。
3) 新建一个类com.hand.Log4jTest
package com.hand;
import org.apache.log4j.Logger;
public class
- 多点触摸(图片缩放为例)
不懂事的小屁孩
多点触摸
多点触摸的事件跟单点是大同小异的,上个图片缩放的代码,供大家参考一下
import android.app.Activity;
import android.os.Bundle;
import android.view.MotionEvent;
import android.view.View;
import android.view.View.OnTouchListener
- 有关浏览器窗口宽度高度几个值的解析
换个号韩国红果果
JavaScripthtml
1 元素的 offsetWidth 包括border padding content 整体的宽度。
clientWidth 只包括内容区 padding 不包括border。
clientLeft = offsetWidth -clientWidth 即这个元素border的值
offsetLeft 若无已定位的包裹元素
- 数据库产品巡礼:IBM DB2概览
蓝儿唯美
db2
IBM DB2是一个支持了NoSQL功能的关系数据库管理系统,其包含了对XML,图像存储和Java脚本对象表示(JSON)的支持。DB2可被各种类型的企 业使用,它提供了一个数据平台,同时支持事务和分析操作,通过提供持续的数据流来保持事务工作流和分析操作的高效性。 DB2支持的操作系统
DB2可应用于以下三个主要的平台:
工作站,DB2可在Linus、Unix、Windo
- java笔记5
a-john
java
控制执行流程:
1,true和false
利用条件表达式的真或假来决定执行路径。例:(a==b)。它利用条件操作符“==”来判断a值是否等于b值,返回true或false。java不允许我们将一个数字作为布尔值使用,虽然这在C和C++里是允许的。如果想在布尔测试中使用一个非布尔值,那么首先必须用一个条件表达式将其转化成布尔值,例如if(a!=0)。
2,if-els
- Web开发常用手册汇总
aijuans
PHP
一门技术,如果没有好的参考手册指导,很难普及大众。这其实就是为什么很多技术,非常好,却得不到普遍运用的原因。
正如我们学习一门技术,过程大概是这个样子:
①我们日常工作中,遇到了问题,困难。寻找解决方案,即寻找新的技术;
②为什么要学习这门技术?这门技术是不是很好的解决了我们遇到的难题,困惑。这个问题,非常重要,我们不是为了学习技术而学习技术,而是为了更好的处理我们遇到的问题,才需要学习新的
- 今天帮助人解决的一个sql问题
asialee
sql
今天有个人问了一个问题,如下:
type AD value
A  
- 意图对象传递数据
百合不是茶
android意图IntentBundle对象数据的传递
学习意图将数据传递给目标活动; 初学者需要好好研究的
1,将下面的代码添加到main.xml中
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http:/
- oracle查询锁表解锁语句
bijian1013
oracleobjectsessionkill
一.查询锁定的表
如下语句,都可以查询锁定的表
语句一:
select a.sid,
a.serial#,
p.spid,
c.object_name,
b.session_id,
b.oracle_username,
b.os_user_name
from v$process p, v$s
- mac osx 10.10 下安装 mysql 5.6 二进制文件[tar.gz]
征客丶
mysqlosx
场景:在 mac osx 10.10 下安装 mysql 5.6 的二进制文件。
环境:mac osx 10.10、mysql 5.6 的二进制文件
步骤:[所有目录请从根“/”目录开始取,以免层级弄错导致找不到目录]
1、下载 mysql 5.6 的二进制文件,下载目录下面称之为 mysql5.6SourceDir;
下载地址:http://dev.mysql.com/downl
- 分布式系统与框架
bit1129
分布式
RPC框架 Dubbo
什么是Dubbo
Dubbo是一个分布式服务框架,致力于提供高性能和透明化的RPC远程服务调用方案,以及SOA服务治理方案。其核心部分包含: 远程通讯: 提供对多种基于长连接的NIO框架抽象封装,包括多种线程模型,序列化,以及“请求-响应”模式的信息交换方式。 集群容错: 提供基于接
- 那些令人蛋痛的专业术语
白糖_
springWebSSOIOC
spring
【控制反转(IOC)/依赖注入(DI)】:
由容器控制程序之间的关系,而非传统实现中,由程序代码直接操控。这也就是所谓“控制反转”的概念所在:控制权由应用代码中转到了外部容器,控制权的转移,是所谓反转。
简单的说:对象的创建又容器(比如spring容器)来执行,程序里不直接new对象。
Web
【单点登录(SSO)】:SSO的定义是在多个应用系统中,用户
- 《给大忙人看的java8》摘抄
braveCS
java8
函数式接口:只包含一个抽象方法的接口
lambda表达式:是一段可以传递的代码
你最好将一个lambda表达式想象成一个函数,而不是一个对象,并记住它可以被转换为一个函数式接口。
事实上,函数式接口的转换是你在Java中使用lambda表达式能做的唯一一件事。
方法引用:又是要传递给其他代码的操作已经有实现的方法了,这时可以使
- 编程之美-计算字符串的相似度
bylijinnan
java算法编程之美
public class StringDistance {
/**
* 编程之美 计算字符串的相似度
* 我们定义一套操作方法来把两个不相同的字符串变得相同,具体的操作方法为:
* 1.修改一个字符(如把“a”替换为“b”);
* 2.增加一个字符(如把“abdd”变为“aebdd”);
* 3.删除一个字符(如把“travelling”变为“trav
- 上传、下载压缩图片
chengxuyuancsdn
下载
/**
*
* @param uploadImage --本地路径(tomacat路径)
* @param serverDir --服务器路径
* @param imageType --文件或图片类型
* 此方法可以上传文件或图片.txt,.jpg,.gif等
*/
public void upload(String uploadImage,Str
- bellman-ford(贝尔曼-福特)算法
comsci
算法F#
Bellman-Ford算法(根据发明者 Richard Bellman 和 Lester Ford 命名)是求解单源最短路径问题的一种算法。单源点的最短路径问题是指:给定一个加权有向图G和源点s,对于图G中的任意一点v,求从s到v的最短路径。有时候这种算法也被称为 Moore-Bellman-Ford 算法,因为 Edward F. Moore zu 也为这个算法的发展做出了贡献。
与迪科
- oracle ASM中ASM_POWER_LIMIT参数
daizj
ASMoracleASM_POWER_LIMIT磁盘平衡
ASM_POWER_LIMIT
该初始化参数用于指定ASM例程平衡磁盘所用的最大权值,其数值范围为0~11,默认值为1。该初始化参数是动态参数,可以使用ALTER SESSION或ALTER SYSTEM命令进行修改。示例如下:
SQL>ALTER SESSION SET Asm_power_limit=2;
- 高级排序:快速排序
dieslrae
快速排序
public void quickSort(int[] array){
this.quickSort(array, 0, array.length - 1);
}
public void quickSort(int[] array,int left,int right){
if(right - left <= 0
- C语言学习六指针_何谓变量的地址 一个指针变量到底占几个字节
dcj3sjt126com
C语言
# include <stdio.h>
int main(void)
{
/*
1、一个变量的地址只用第一个字节表示
2、虽然他只使用了第一个字节表示,但是他本身指针变量类型就可以确定出他指向的指针变量占几个字节了
3、他都只存了第一个字节地址,为什么只需要存一个字节的地址,却占了4个字节,虽然只有一个字节,
但是这些字节比较多,所以编号就比较大,
- phpize使用方法
dcj3sjt126com
PHP
phpize是用来扩展php扩展模块的,通过phpize可以建立php的外挂模块,下面介绍一个它的使用方法,需要的朋友可以参考下
安装(fastcgi模式)的时候,常常有这样一句命令:
代码如下:
/usr/local/webserver/php/bin/phpize
一、phpize是干嘛的?
phpize是什么?
phpize是用来扩展php扩展模块的,通过phpi
- Java虚拟机学习 - 对象引用强度
shuizhaosi888
JAVA虚拟机
本文原文链接:http://blog.csdn.net/java2000_wl/article/details/8090276 转载请注明出处!
无论是通过计数算法判断对象的引用数量,还是通过根搜索算法判断对象引用链是否可达,判定对象是否存活都与“引用”相关。
引用主要分为 :强引用(Strong Reference)、软引用(Soft Reference)、弱引用(Wea
- .NET Framework 3.5 Service Pack 1(完整软件包)下载地址
happyqing
.net下载framework
Microsoft .NET Framework 3.5 Service Pack 1(完整软件包)
http://www.microsoft.com/zh-cn/download/details.aspx?id=25150
Microsoft .NET Framework 3.5 Service Pack 1 是一个累积更新,包含很多基于 .NET Framewo
- JAVA定时器的使用
jingjing0907
javatimer线程定时器
1、在应用开发中,经常需要一些周期性的操作,比如每5分钟执行某一操作等。
对于这样的操作最方便、高效的实现方式就是使用java.util.Timer工具类。
privatejava.util.Timer timer;
timer = newTimer(true);
timer.schedule(
newjava.util.TimerTask() { public void run()
- Webbench
流浪鱼
webbench
首页下载地址 http://home.tiscali.cz/~cz210552/webbench.html
Webbench是知名的网站压力测试工具,它是由Lionbridge公司(http://www.lionbridge.com)开发。
Webbench能测试处在相同硬件上,不同服务的性能以及不同硬件上同一个服务的运行状况。webbench的标准测试可以向我们展示服务器的两项内容:每秒钟相
- 第11章 动画效果(中)
onestopweb
动画
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- windows下制作bat启动脚本.
sanyecao2314
javacmd脚本bat
java -classpath C:\dwjj\commons-dbcp.jar;C:\dwjj\commons-pool.jar;C:\dwjj\log4j-1.2.16.jar;C:\dwjj\poi-3.9-20121203.jar;C:\dwjj\sqljdbc4.jar;C:\dwjj\voucherimp.jar com.citsamex.core.startup.MainStart
- Java进行RSA加解密的例子
tomcat_oracle
java
加密是保证数据安全的手段之一。加密是将纯文本数据转换为难以理解的密文;解密是将密文转换回纯文本。 数据的加解密属于密码学的范畴。通常,加密和解密都需要使用一些秘密信息,这些秘密信息叫做密钥,将纯文本转为密文或者转回的时候都要用到这些密钥。 对称加密指的是发送者和接收者共用同一个密钥的加解密方法。 非对称加密(又称公钥加密)指的是需要一个私有密钥一个公开密钥,两个不同的密钥的
- Android_ViewStub
阿尔萨斯
ViewStub
public final class ViewStub extends View
java.lang.Object
android.view.View
android.view.ViewStub
类摘要: ViewStub 是一个隐藏的,不占用内存空间的视图对象,它可以在运行时延迟加载布局资源文件。当 ViewSt