lsvm进行诗歌生成
from keras.models import Sequential
from keras.layers.core import Dense,Activation,Dropout
from keras.layers.recurrent import LSTM
from keras.utils.data_utils import get_file
import numpy as np
import random,sys
def sample(a,temperator=1.0):
a = np.log(a)/temperator
a = np.exp(a)/np.sum(np.exp(a))
return np.argmax(np.random.multinomial(1,a,1))
if __name__=="__main__":
path = './poetry.txt'
print('opeing txt')
text = open(path, 'r',encoding='utf-8').read().lower()
print(text)
print('corpus length',len(text))
chars = set(text)
print('total chars',len(chars))
char_indices = dict((c,i) for i,c in enumerate(chars))
print(char_indices)
indices_char = dict((i,c) for i,c in enumerate(chars))
print(indices_char)
maxlen = 40
step = 3
sentences = []
next_chars = []
for i in range(0,len(text) - maxlen,step):
sentences.append(text[i:i+maxlen])
next_chars.append(text[i+maxlen])
print("nb sentences:",len(sentences))
print("Vectorization")
X = np.zeros((len(sentences),maxlen,len(chars)),dtype=np.bool)
y = np.zeros((len(sentences),len(chars)),dtype=np.bool)
for i,sentence in enumerate(sentences):
for t,char in enumerate(sentence):
X[i,t,char_indices[char]] = 1
y[i,char_indices[next_chars[i]]] = 1
print("Build model......")
model = Sequential()
model.add(LSTM(512,return_sequences = True,input_shape=(maxlen,len(chars))))
model.add(Dropout(0.2))
model.add(LSTM(512,return_sequences=False))
model.add(Dropout(0.2))
model.add(Dense(len(chars)))
model.add(Activation('softmax'))
print("Modelling finishing")
model.compile(loss='categorical_crossentropy', optimizer='rmsprop')
for iteration in range(1,100):
print('-'*50)
print("Iteration",iteration)
model.fit(X,y,batch_size=128,nb_epoch=1)
start_index = random.randint(0,len(text)-maxlen-1)
for diversity in [0.2, 0.5,0.8, 1.0,1.1, 1.2, 1.5]:
print('----- diversity:', diversity)
generated = ''
sentence = text[start_index:start_index+maxlen]
generated += sentence
print('----- Generating with seed: "' + sentence + '"')
for iteration in range(120):
x = np.zeros((1, maxlen, len(chars)))
for t, char in enumerate(sentence):
x[0, t, char_indices[char]] = 1.
preds = model.predict(x, verbose=0)[0]
next_index = sample(preds,diversity)
next_char = indices_char[next_index]
generated += next_char
sentence = sentence[1:] + next_char
print(generated)