使用keras_bert来搭建模型
#bert
def get_model():
bert_model = load_trained_model_from_checkpoint(config_path, checkpoint_path)
for l in bert_model.layers:
l.trainable = True
T1 = Input(shape=(None,))
T2 = Input(shape=(None,))
T = bert_model([T1, T2])
T = Lambda(lambda x: x[:, 0])(T)
output = Dense(4, activation='softmax')(T)
model = Model([T1, T2], output)
model.compile(
loss='categorical_crossentropy',
optimizer=Adam(1e-5),
metrics=['accuracy']
)
model.summary()
return model
上面为bert模型代码,做一个四分类的任务,如果在T后面直接接TextCNN,会报错
def get_model():
bert_model = load_trained_model_from_checkpoint(config_path, checkpoint_path)
for l in bert_model.layers:
l.trainable = True
T1 = Input(shape=(None,))
T2 = Input(shape=(None,))
T = bert_model([T1, T2])
convs = []
for kernel_size in [3, 4, 5]:
c = Conv1D(128, kernel_size, activation='relu')(T)
c = GlobalMaxPooling1D()(c)
convs.append(c)
x = Concatenate()(convs)
output = Dense(4, activation='softmax')(x)
model = Model([T1, T2], output)
model.compile(
loss='categorical_crossentropy',
optimizer=Adam(1e-5),
metrics=['accuracy']
)
model.summary()
return model
上面为bert接TextCNN模型代码,报错如下:
TypeError: Layer conv1d_1 does not support masking, but was passed an input_mask: Tensor("model_2/Encoder-12-FeedForward-Add/All:0", shape=(?, ?), dtype=bool)
报错原因是CNN层不支持masking的输入,因此自己定义一个Nonmasking层,加入到CNN层之前:
class NonMasking(Layer):
def __init__(self, **kwargs):
self.supports_masking = True
super(NonMasking, self).__init__(**kwargs)
def build(self, input_shape):
input_shape = input_shape
def compute_mask(self, input, input_mask=None):
# do not pass the mask to the next layers
return None
def call(self, x, mask=None):
return x
def get_output_shape_for(self, input_shape):
return input_shape
def get_model():
bert_model = load_trained_model_from_checkpoint(config_path, checkpoint_path)
for l in bert_model.layers:
l.trainable = True
T1 = Input(shape=(None,))
T2 = Input(shape=(None,))
T = bert_model([T1, T2])
T = NonMasking()(T)
convs = []
for kernel_size in [3, 4, 5]:
c = Conv1D(128, kernel_size, activation='relu')(T)
c = GlobalMaxPooling1D()(c)
convs.append(c)
x = Concatenate()(convs)
output = Dense(4, activation='softmax')(x)
model = Model([T1, T2], output)
model.compile(
loss='categorical_crossentropy',
optimizer=Adam(1e-5),
metrics=['accuracy']
)
model.summary()
return model
上面为bert接TextCNN模型,就不会报错了
当然也可以接LSTM等其他模型
def get_model():
bert_model = load_trained_model_from_checkpoint(config_path, checkpoint_path)
for l in bert_model.layers:
l.trainable = True
T1 = Input(shape=(None,))
T2 = Input(shape=(None,))
T = bert_model([T1, T2])
x = LSTM(128, return_sequences=False)(T)
output = Dense(4, activation='softmax')(x)
model = Model([T1, T2], output)
model.compile(
loss='categorical_crossentropy',
optimizer=Adam(1e-5),
metrics=['accuracy']
)
model.summary()
return model