class AttnDecoderRNN(nn.Module):
def __init__(self, hidden_size, output_size, dropout_p=0.1, max_length=MAX_LENGTH):
super(AttnDecoderRNN, self).__init__()
self.hidden_size = hidden_size
self.output_size = output_size
self.dropout_p = dropout_p
self.max_length = max_length
self.embedding = nn.Embedding(self.output_size, self.hidden_size)
self.attn = nn.Linear(self.hidden_size * 2, self.max_length)
self.attn_combine = nn.Linear(self.hidden_size * 2, self.hidden_size)
self.dropout = nn.Dropout(self.dropout_p)
self.gru = nn.GRU(self.hidden_size, self.hidden_size)
self.out = nn.Linear(self.hidden_size, self.output_size)
def forward(self, input, hidden, encoder_outputs):
embedded = self.embedding(input).view(1, 1, -1)
embedded = self.dropout(embedded)
attn_weights = F.softmax(
self.attn(torch.cat((embedded[0], hidden[0]), 1)), dim=1)
attn_applied = torch.bmm(attn_weights.unsqueeze(0),
encoder_outputs.unsqueeze(0))
output = torch.cat((embedded[0], attn_applied[0]), 1)
output = self.attn_combine(output).unsqueeze(0)
output = F.relu(output)
output, hidden = self.gru(output, hidden)
output = F.log_softmax(self.out(output[0]), dim=1)
return output, hidden, attn_weights
def initHidden(self):
return torch.zeros(1, 1, self.hidden_size, device=device)
class AttentiondecoderV2(nn.Module):
"""
采用seq to seq模型,修改注意力权重的计算方式
"""
def __init__(self, hidden_size, output_size, dropout_p=0.1):
super(AttentiondecoderV2, self).__init__()
self.hidden_size = hidden_size
self.output_size = output_size
self.dropout_p = dropout_p
self.embedding = nn.Embedding(self.output_size, self.hidden_size)
self.attn_combine = nn.Linear(self.hidden_size * 2, self.hidden_size)
self.dropout = nn.Dropout(self.dropout_p)
self.gru = nn.GRU(self.hidden_size, self.hidden_size)
self.out = nn.Linear(self.hidden_size, self.output_size)
# test
self.vat = nn.Linear(hidden_size, 1)
def forward(self, input, hidden, encoder_outputs):
embedded = self.embedding(input) # 前一次的输出进行词嵌入
embedded = self.dropout(embedded)
# test
batch_size = encoder_outputs.shape[1]
alpha = hidden + encoder_outputs # 特征融合采用+/concat其实都可以
alpha = alpha.view(-1, alpha.shape[-1])
attn_weights = self.vat( torch.tanh(alpha)) # 将encoder_output:batch*seq*features,将features的维度降为1
attn_weights = attn_weights.view(-1, 1, batch_size).permute((2,1,0))
attn_weights = F.softmax(attn_weights, dim=2)
# attn_weights = F.softmax(
# self.attn(torch.cat((embedded, hidden[0]), 1)), dim=1) # 上一次的输出和隐藏状态求出权重
attn_applied = torch.matmul(attn_weights,
encoder_outputs.permute((1, 0, 2))) # 矩阵乘法,bmm(8×1×56,8×56×256)=8×1×256
output = torch.cat((embedded, attn_applied.squeeze(1) ), 1) # 上一次的输出和attention feature,做一个线性+GRU
output = self.attn_combine(output).unsqueeze(0)
output = F.relu(output)
output, hidden = self.gru(output, hidden)
output = F.log_softmax(self.out(output[0]), dim=1) # 最后输出一个概率
return output, hidden, attn_weights
def initHidden(self, batch_size):
result = Variable(torch.zeros(1, batch_size, self.hidden_size))
return result
配图是第一种