Android Okhttp主流程源码分析

在OkHttp3中,其灵活性很大程度上体现在可以 intercept 其任意一个环节,而这个优势便是okhttp3整个请求响应架构体系的精髓所在,先放出一张主框架请求流程图,接着再分析源码。
Android Okhttp主流程源码分析_第1张图片

String url = "http://wwww.baidu.com";
OkHttpClient okHttpClient = new OkHttpClient();
final Request request = new Request.Builder()
        .url(url)
        .build();
Call call = okHttpClient.newCall(request);
call.enqueue(new Callback() {
    @Override
    public void onFailure(Call call, IOException e) {
        Log.d(TAG, "onFailure: ");
    }

    @Override
    public void onResponse(Call call, Response response) throws IOException {
        Log.d(TAG, "onResponse: " + response.body().string());
    }
});

这大概是一个最简单的一个例子了,在new OkHttpClient()内部使用构造器模式初始化了一些配置信息:支持协议、任务分发器(其内部包含一个线程池,执行异步请求)、连接池(其内部包含一个线程池,维护connection)、连接/读/写超时时长等信息。

public Builder() {
    dispatcher = new Dispatcher(); //任务调度器
    protocols = DEFAULT_PROTOCOLS; //支持的协议
    connectionSpecs = DEFAULT_CONNECTION_SPECS;
    eventListenerFactory = EventListener.factory(EventListener.NONE);
    proxySelector = ProxySelector.getDefault();
    cookieJar = CookieJar.NO_COOKIES;
    socketFactory = SocketFactory.getDefault();
    hostnameVerifier = OkHostnameVerifier.INSTANCE;
    certificatePinner = CertificatePinner.DEFAULT;
    proxyAuthenticator = Authenticator.NONE;
    authenticator = Authenticator.NONE;
    connectionPool = new ConnectionPool(); //连接池
    dns = Dns.SYSTEM;
    followSslRedirects = true;
    followRedirects = true;
    retryOnConnectionFailure = true;
    connectTimeout = 10_000;//超时时间
    readTimeout = 10_000;
    writeTimeout = 10_000;
    pingInterval = 0;
}

第一行创建了一个Dispatcher任务调度器,它定义了三个双向任务队列,两个异步队列:准备执行的请求队列 readyAsyncCalls、正在运行的请求队列 runningAsyncCalls;一个正在运行的同步请求队列 runningSyncCalls

public final class Dispatcher {
    private int maxRequests = 64; //最大请求数量
    private int maxRequestsPerHost = 5; //每台主机最大的请求数量
    private @Nullable Runnable idleCallback;

    /** Executes calls. Created lazily. */
    private @Nullable ExecutorService executorService; //线程池

    /** Ready async calls in the order they'll be run. */
    private final Deque readyAsyncCalls = new ArrayDeque<>();

    /** Running asynchronous calls. Includes canceled calls that haven't finished yet. */
    private final Deque runningAsyncCalls = new ArrayDeque<>();

    /** Running synchronous calls. Includes canceled calls that haven't finished yet. */
    private final Deque runningSyncCalls = new ArrayDeque<>();

    /** 这个线程池没有核心线程,线程数量没有限制,空闲60s就会回收*/
    public synchronized ExecutorService executorService() {
        if (executorService == null) {
          executorService = new ThreadPoolExecutor(0, Integer.MAX_VALUE, 60, TimeUnit.SECONDS,
              new SynchronousQueue(), Util.threadFactory("OkHttp Dispatcher", false));
        }
        return executorService;
    }
}

另外还有一个线程池 executorService ,这个线程池跟Android中的CachedThreadPool非常类似,这种类型的线程池,适用于大量的耗时较短的异步任务。下一篇文章 将对OkHttp框架中的线程池做一个总结。

接下来接着看Request的构造,这个例子Request比较简单,指定了请求方式 GET 和请求 url

public static class Builder {
    HttpUrl url;
    String method;
    Headers.Builder headers;
    RequestBody body;
    Object tag;

    public Builder() {
        this.method = "GET";
        this.headers = new Headers.Builder();
    }

    public Builder url(HttpUrl url) {
        if (url == null) throw new NullPointerException("url == null");
        this.url = url;
        return this;
    }
    public Request build() {
        if (url == null) throw new IllegalStateException("url == null");
        return new Request(this);
    }
    ...
}

紧接着通过 OkHttpClientRequest 构造一个 Call对象,它的实现是RealCall

public Call newCall(Request request) {
    return RealCall.newRealCall(this, request, false /* for web socket */);
}

static RealCall newRealCall(OkHttpClient client, Request originalRequest, boolean forWebSocket){
    // Safely publish the Call instance to the EventListener.
    RealCall call = new RealCall(client, originalRequest, forWebSocket);
    call.eventListener = client.eventListenerFactory().create(call);
    return call;
}

private RealCall(OkHttpClient client, Request originalRequest, boolean forWebSocket) {
    this.client = client;
    this.originalRequest = originalRequest;
    this.forWebSocket = forWebSocket;
    this.retryAndFollowUpInterceptor = new RetryAndFollowUpInterceptor(client, forWebSocket);
}

可以看到在 RealCall 的构造方法中创建了一个RetryAndFollowUpInterceptor,用于处理请求错误和重定向等,这是 Okhttp 框架的精髓 interceptor chain 中的一环,默认情况下也是第一个拦截器,除非调用 OkHttpClient.Builder#addInterceptor(Interceptor) 来添加全局的拦截器。关于拦截器链的顺序参见 RealCall#getResponseWithInterceptorChain() 方法。

RealCall#enqueue(Callback)

public void enqueue(Callback responseCallback) {
    synchronized (this) {
        //每个请求只能之执行一次
        if (executed) throw new IllegalStateException("Already Executed");
        executed = true;
    }
    captureCallStackTrace();
    eventListener.callStart(this);
    client.dispatcher().enqueue(new AsyncCall(responseCallback));
}

可以看到,一个 Call 只能执行一次,否则会抛异常,这里创建了一个 AsyncCall 并将Callback传入,接着再交给任务分发器 Dispatcher 来进一步处理。

synchronized void enqueue(AsyncCall call) {
    //正在执行的任务数量小于最大值(64),并且此任务所属主机的正在执行任务小于最大值(5)
    if (runningAsyncCalls.size() < maxRequests && runningCallsForHost(call) < maxRequestsPerHost)     {
        runningAsyncCalls.add(call);
        executorService().execute(call);
    } else {
        readyAsyncCalls.add(call);
    }
}

Dispatcher#enqueue()方法的策略可以看出,对于请求的入队做了一些限制,若正在执行的请求数量小于最大值(默认64),并且此请求所属主机的正在执行任务小于最大值(默认5),就加入正在运行的队列并通过线程池来执行该任务,否则加入准备执行队列中。

  • 流程图

现在回头看看 AsyncCall ,它继承自 NamedRunnable,而 NamedRunnable实现了 Runnable 接口,它的作用有2个:
① 采用模板方法的设计模式,让子类将具体的操作放在 execute()方法中;
② 给线程指定一个名字,比如传入模块名称,方便监控线程的活动状态;

public abstract class NamedRunnable implements Runnable {
    protected final String name;

    public NamedRunnable(String format, Object... args) {
        this.name = Util.format(format, args);
    }

    @Override public final void run() {
        String oldName = Thread.currentThread().getName();
        Thread.currentThread().setName(name);
        try {
            //采用模板方法让子类将具体的操作放到此execute()方法
            execute();
        } finally {
            Thread.currentThread().setName(oldName);
        }
    }

    protected abstract void execute();
}
final class AsyncCall extends NamedRunnable {
    //省略...
   @Override protected void execute() {
        boolean signalledCallback = false;
        try {
            //调用 getResponseWithInterceptorChain()获得响应内容
            Response response = getResponseWithInterceptorChain(); //①
            if (retryAndFollowUpInterceptor.isCanceled()) {
                //这个标记为主要是避免异常时2次回调
                signalledCallback = true;
                //回调Callback告知失败
                responseCallback.onFailure(RealCall.this, new IOException("Canceled")); 
            } else {
                signalledCallback = true;
                //回调Callback,将响应内容传回去
                responseCallback.onResponse(RealCall.this, response);
            }
        } catch (IOException e) {
            if (signalledCallback) {
                // Do not signal the callback twice!
                Platform.get().log(INFO, "Callback failure for " + toLoggableString(), e);
            } else {
                eventListener.callFailed(RealCall.this, e);
                responseCallback.onFailure(RealCall.this, e);
            }
        } finally {
            //不管请求成功与否,都进行finished()操作
            client.dispatcher().finished(this);//②
        }
    }
}

先看注释②的行finally块中执行的 client.dispatcher().finished(this)

void finished(AsyncCall call) {
    finished(runningAsyncCalls, call, true);
}

private  void finished(Deque calls, T call, boolean promoteCalls) {
    int runningCallsCount;
    Runnable idleCallback;
    synchronized (this) {
        //从正在执行的队列中将其移除
        if (!calls.remove(call)) throw new AssertionError("Call wasn't in-flight!");
        if (promoteCalls) promoteCalls(); //推动下一个任务的执行
        runningCallsCount = runningCallsCount();//同步+异步的正在执行任务数量
        idleCallback = this.idleCallback;
    }
    //如果没有正在执行的任务,且idleCallback不为null,则回调通知空闲了
    if (runningCallsCount == 0 && idleCallback != null) {
        idleCallback.run();
    }
}

其中promoteCalls()为推动下一个任务执行,其实它做的也很简单,就是在条件满足的情况下,将 readyAsyncCalls 中的任务移动到 runningAsyncCalls中,并交给线程池来执行,以下是它的实现。

private void promoteCalls() {
    if (runningAsyncCalls.size() >= maxRequests) return; // Already running max capacity.
    if (readyAsyncCalls.isEmpty()) return; // No ready calls to promote.

    //若条件允许,将readyAsyncCalls中的任务移动到runningAsyncCalls中,并交给线程池执行
    for (Iterator i = readyAsyncCalls.iterator(); i.hasNext(); ) {
        AsyncCall call = i.next();

        if (runningCallsForHost(call) < maxRequestsPerHost) {
            i.remove();
            runningAsyncCalls.add(call);
            executorService().execute(call);
        }
        //当runningAsyncCalls满了,直接退出迭代
        if (runningAsyncCalls.size() >= maxRequests) return; // Reached max capacity.
    }
}

接下来就回到注释①处的响应内容的获取 getResponseWithInterceptorChain()

Response getResponseWithInterceptorChain() throws IOException {
    // Build a full stack of interceptors.
    List interceptors = new ArrayList<>(); //这是一个List,是有序的
    interceptors.addAll(client.interceptors());//首先添加的是用户添加的全局拦截器
    interceptors.add(retryAndFollowUpInterceptor); //错误、重定向拦截器
    //桥接拦截器,桥接应用层与网络层,添加必要的头、
    interceptors.add(new BridgeInterceptor(client.cookieJar())); 
    //缓存处理,Last-Modified、ETag、DiskLruCache等
    interceptors.add(new CacheInterceptor(client.internalCache())); 
    //连接拦截器
    interceptors.add(new ConnectInterceptor(client));
    //从这就知道,通过okHttpClient.Builder#addNetworkInterceptor()传进来的拦截器只对非网页的请求生效
    if (!forWebSocket) {
        interceptors.addAll(client.networkInterceptors());
    }
    //真正访问服务器的拦截器
    interceptors.add(new CallServerInterceptor(forWebSocket));

    Interceptor.Chain chain = new RealInterceptorChain(interceptors, null, null, null, 0,
        originalRequest, this, eventListener, client.connectTimeoutMillis(),
        client.readTimeoutMillis(), client.writeTimeoutMillis());

    return chain.proceed(originalRequest);
}

可以看这块重点就是 interceptors 这个集合,首先将前面的 client.interceptors() 全部加入其中,还有在创建 RealCall时的 retryAndFollowUpInterceptor加入其中,接着还创建并添加了BridgeInterceptorCacheInterceptorConnectInterceptorCallServerInterceptor,最后通过RealInterceptorChain#proceed(Request)来执行整个 interceptor chain,可见把这个拦截器链搞清楚,整体流程也就明朗了。

RealInterceptorChain#proceed()

public Response proceed(Request request) throws IOException {
    return proceed(request, streamAllocation, httpCodec, connection);
}

public Response proceed(Request request, StreamAllocation streamAllocation, HttpCodec httpCodec,
    RealConnection connection) throws IOException {
    //省略异常处理...

    // Call the next interceptor in the chain.
    RealInterceptorChain next = new RealInterceptorChain(interceptors, streamAllocation, httpCodec,
        connection, index + 1, request, call, eventListener, connectTimeout, readTimeout,
        writeTimeout);
    Interceptor interceptor = interceptors.get(index);
    Response response = interceptor.intercept(next);

    //省略异常处理...
    return response;
}

从这段实现可以看出,是按照添加到 interceptors 集合的顺序,逐个往下调用拦截器的intercept()方法,所以在前面的拦截器会先被调用。这个例子中自然就是 RetryAndFollowUpInterceptor 了。

public Response intercept(Chain chain) throws IOException {
    Request request = chain.request();
    RealInterceptorChain realChain = (RealInterceptorChain) chain;
    Call call = realChain.call();
    EventListener eventListener = realChain.eventListener();
    //创建一个StreamAllocation
    StreamAllocation streamAllocation = new StreamAllocation(client.connectionPool(),
        createAddress(request.url()), call, eventListener, callStackTrace);
    this.streamAllocation = streamAllocation;

    //统计重定向次数,不能大于20
    int followUpCount = 0; 
    Response priorResponse = null;
    while (true) {
        if (canceled) {
            streamAllocation.release();
            throw new IOException("Canceled");
        }

        Response response;
        boolean releaseConnection = true;
        try {
            //调用下一个interceptor的来获得响应内容
            response = realChain.proceed(request, streamAllocation, null, null);
            releaseConnection = false;
        } catch (RouteException e) {
            // The attempt to connect via a route failed. The request will not have been sent.
            if (!recover(e.getLastConnectException(), streamAllocation, false, request)) {
                throw e.getLastConnectException();
            }
            releaseConnection = false;
            continue;
        } catch (IOException e) {
            // An attempt to communicate with a server failed. The request may have been sent.
            boolean requestSendStarted = !(e instanceof ConnectionShutdownException);
            if (!recover(e, streamAllocation, requestSendStarted, request)) throw e;
            releaseConnection = false;
            continue;
        } finally {
            // We're throwing an unchecked exception. Release any resources.
            if (releaseConnection) {
                streamAllocation.streamFailed(null);
                streamAllocation.release();
            }
        }

        // Attach the prior response if it exists. Such responses never have a body.
        if (priorResponse != null) {
            response = response.newBuilder()
                .priorResponse(priorResponse.newBuilder()
                        .body(null)
                        .build())
                .build();
        }

        //重定向处理    
        Request followUp = followUpRequest(response, streamAllocation.route());

        if (followUp == null) {
            if (!forWebSocket) {
                streamAllocation.release();
            }
            return response;
        }

        closeQuietly(response.body());

        if (++followUpCount > MAX_FOLLOW_UPS) {
            streamAllocation.release();
            throw new ProtocolException("Too many follow-up requests: " + followUpCount);
        }

        if (followUp.body() instanceof UnrepeatableRequestBody) {
            streamAllocation.release();
            throw new HttpRetryException("Cannot retry streamed HTTP body", response.code());
        }

        if (!sameConnection(response, followUp.url())) {
            streamAllocation.release();
            streamAllocation = new StreamAllocation(client.connectionPool(),
            createAddress(followUp.url()), call, eventListener, callStackTrace);
            this.streamAllocation = streamAllocation;
        } else if (streamAllocation.codec() != null) {
            throw new IllegalStateException("Closing the body of " + response
                + " didn't close its backing stream. Bad interceptor?");
        }

        request = followUp;
        priorResponse = response;
    }
}

这个拦截器就如同它的名字retry and followUp,主要负责错误处理和重定向等问题,比如路由错误、IO异常等。

接下来就到了BridgeInterceptor#intercept(),在这个拦截器中,添加了必要请求头信息,gzip处理等。

public Response intercept(Chain chain) throws IOException {
    Request userRequest = chain.request();
    Request.Builder requestBuilder = userRequest.newBuilder();

    //从这开始给请求添加了一些请求头信息
    RequestBody body = userRequest.body();
    if (body != null) {
        MediaType contentType = body.contentType();
        if (contentType != null) {
            requestBuilder.header("Content-Type", contentType.toString());
        }

        long contentLength = body.contentLength();
        if (contentLength != -1) {
            requestBuilder.header("Content-Length", Long.toString(contentLength));
            requestBuilder.removeHeader("Transfer-Encoding");
        } else {
            requestBuilder.header("Transfer-Encoding", "chunked");
            requestBuilder.removeHeader("Content-Length");
        }
    }

    if (userRequest.header("Host") == null) {
        requestBuilder.header("Host", hostHeader(userRequest.url(), false));
    }

    if (userRequest.header("Connection") == null) {
        requestBuilder.header("Connection", "Keep-Alive");
    }

    // If we add an "Accept-Encoding: gzip" header field we're responsible for also decompressing
    // the transfer stream.
    boolean transparentGzip = false;
    if (userRequest.header("Accept-Encoding") == null && userRequest.header("Range") == null) {
        transparentGzip = true;
        requestBuilder.header("Accept-Encoding", "gzip");
    }

    List cookies = cookieJar.loadForRequest(userRequest.url());
    if (!cookies.isEmpty()) {
        requestBuilder.header("Cookie", cookieHeader(cookies));
    }

    if (userRequest.header("User-Agent") == null) {
        requestBuilder.header("User-Agent", Version.userAgent());
    }

    Response networkResponse = chain.proceed(requestBuilder.build());

    HttpHeaders.receiveHeaders(cookieJar, userRequest.url(), networkResponse.headers());

    Response.Builder responseBuilder = networkResponse.newBuilder()
        .request(userRequest);

    if (transparentGzip
          && "gzip".equalsIgnoreCase(networkResponse.header("Content-Encoding"))
          && HttpHeaders.hasBody(networkResponse)) {
        GzipSource responseBody = new GzipSource(networkResponse.body().source());
        Headers strippedHeaders = networkResponse.headers().newBuilder()
            .removeAll("Content-Encoding")
            .removeAll("Content-Length")
            .build();
        responseBuilder.headers(strippedHeaders);
        String contentType = networkResponse.header("Content-Type");
        responseBuilder.body(new RealResponseBody(contentType, -1L, Okio.buffer(responseBody)));
    }

    return responseBuilder.build();
}

这个拦截器处理请求信息、cookie、gzip等,接着往下是 CacheInterceptor

public Response intercept(Chain chain) throws IOException {
    Response cacheCandidate = cache != null
        ? cache.get(chain.request())
        : null;

    long now = System.currentTimeMillis();

    CacheStrategy strategy = new CacheStrategy.Factory(now, chain.request(), cacheCandidate).get();
    Request networkRequest = strategy.networkRequest;
    Response cacheResponse = strategy.cacheResponse;

    if (cache != null) {
        cache.trackResponse(strategy);
    }

    if (cacheCandidate != null && cacheResponse == null) {
        closeQuietly(cacheCandidate.body()); // The cache candidate wasn't applicable. Close it.
    } 

    // If we're forbidden from using the network and the cache is insufficient, fail.
    if (networkRequest == null && cacheResponse == null) {
        return new Response.Builder()
            .request(chain.request())
            .protocol(Protocol.HTTP_1_1)
            .code(504)
            .message("Unsatisfiable Request (only-if-cached)")
            .body(Util.EMPTY_RESPONSE)
            .sentRequestAtMillis(-1L)
            .receivedResponseAtMillis(System.currentTimeMillis())
            .build();
    }

    // If we don't need the network, we're done.
    if (networkRequest == null) {
        return cacheResponse.newBuilder()
            .cacheResponse(stripBody(cacheResponse))
            .build();
    }

    Response networkResponse = null;
    try {
        //调用下一个拦截器进行网络请求    
        networkResponse = chain.proceed(networkRequest);
    } finally {
        // If we're crashing on I/O or otherwise, don't leak the cache body.
        if (networkResponse == null && cacheCandidate != null) {
            closeQuietly(cacheCandidate.body());
        }
    }

    // If we have a cache response too, then we're doing a conditional get.
    if (cacheResponse != null) {
        if (networkResponse.code() == HTTP_NOT_MODIFIED) {
            Response response = cacheResponse.newBuilder()
                .headers(combine(cacheResponse.headers(), networkResponse.headers()))
                .sentRequestAtMillis(networkResponse.sentRequestAtMillis())
                .receivedResponseAtMillis(networkResponse.receivedResponseAtMillis())
                .cacheResponse(stripBody(cacheResponse))
                .networkResponse(stripBody(networkResponse))
                .build();
            networkResponse.body().close();

            // Update the cache after combining headers but before stripping the
            // Content-Encoding header (as performed by initContentStream()).
            cache.trackConditionalCacheHit();
            cache.update(cacheResponse, response);
            return response;
        } else {
            closeQuietly(cacheResponse.body());
        }
    }

    Response response = networkResponse.newBuilder()
        .cacheResponse(stripBody(cacheResponse))
        .networkResponse(stripBody(networkResponse))
        .build();

    if (cache != null) {
        if (HttpHeaders.hasBody(response) && CacheStrategy.isCacheable(response, networkRequest)) {
            // Offer this request to the cache.
            CacheRequest cacheRequest = cache.put(response);
            return cacheWritingResponse(cacheRequest, response);
        }

        if (HttpMethod.invalidatesCache(networkRequest.method())) {
            try {
                cache.remove(networkRequest);
            } catch (IOException ignored) {
                // The cache cannot be written.
            }
        }
    }

    return response;
}

这个拦截器主要工作是做做缓存处理,如果有有缓存并且缓存可用,那就使用缓存,否则进行调用下一个拦截器 ConnectionInterceptor 进行网络请求,并将响应内容缓存。

public Response intercept(Chain chain) throws IOException {
    RealInterceptorChain realChain = (RealInterceptorChain) chain;
    Request request = realChain.request();
    StreamAllocation streamAllocation = realChain.streamAllocation();

    // We need the network to satisfy this request. Possibly for validating a conditional GET.
    boolean doExtensiveHealthChecks = !request.method().equals("GET");
    HttpCodec httpCodec = streamAllocation.newStream(client, chain, doExtensiveHealthChecks);
    RealConnection connection = streamAllocation.connection();

    return realChain.proceed(request, streamAllocation, httpCodec, connection);
}

这个拦截器主要是打开一个到目标服务器的 connection 并调用下一个拦截器 CallServerInterceptor,这是拦截器链最后一个拦截器,它向服务器发起真正的网络请求。

public Response intercept(Chain chain) throws IOException {
    RealInterceptorChain realChain = (RealInterceptorChain) chain;
    HttpCodec httpCodec = realChain.httpStream();
    StreamAllocation streamAllocation = realChain.streamAllocation();
    RealConnection connection = (RealConnection) realChain.connection();
    Request request = realChain.request();

    long sentRequestMillis = System.currentTimeMillis();

    realChain.eventListener().requestHeadersStart(realChain.call());
    httpCodec.writeRequestHeaders(request);
    realChain.eventListener().requestHeadersEnd(realChain.call(), request);

    Response.Builder responseBuilder = null;
    if (HttpMethod.permitsRequestBody(request.method()) && request.body() != null) {
        // If there's a "Expect: 100-continue" header on the request, wait for a "HTTP/1.1 100
        // Continue" response before transmitting the request body. If we don't get that, return
        // what we did get (such as a 4xx response) without ever transmitting the request body.
        if ("100-continue".equalsIgnoreCase(request.header("Expect"))) {
            httpCodec.flushRequest();
            realChain.eventListener().responseHeadersStart(realChain.call());
            responseBuilder = httpCodec.readResponseHeaders(true);
        }

        if (responseBuilder == null) {
            // Write the request body if the "Expect: 100-continue" expectation was met.
            realChain.eventListener().requestBodyStart(realChain.call());
            long contentLength = request.body().contentLength();
            CountingSink requestBodyOut =
                new CountingSink(httpCodec.createRequestBody(request, contentLength));
            BufferedSink bufferedRequestBody = Okio.buffer(requestBodyOut);

            request.body().writeTo(bufferedRequestBody);
            bufferedRequestBody.close();
            realChain.eventListener()
                .requestBodyEnd(realChain.call(), requestBodyOut.successfulCount);
        } else if (!connection.isMultiplexed()) {
            // If the "Expect: 100-continue" expectation wasn't met, prevent the HTTP/1 connection
            // from being reused. Otherwise we're still obligated to transmit the request body to
            // leave the connection in a consistent state.
            streamAllocation.noNewStreams();
        }
    }

    httpCodec.finishRequest();

    if (responseBuilder == null) {
        realChain.eventListener().responseHeadersStart(realChain.call());
        responseBuilder = httpCodec.readResponseHeaders(false);
    }

    Response response = responseBuilder
        .request(request)
        .handshake(streamAllocation.connection().handshake())
        .sentRequestAtMillis(sentRequestMillis)
        .receivedResponseAtMillis(System.currentTimeMillis())
        .build();

    int code = response.code();
    if (code == 100) {
        // server sent a 100-continue even though we did not request one.
        // try again to read the actual response
        responseBuilder = httpCodec.readResponseHeaders(false);

        response = responseBuilder
            .request(request)
            .handshake(streamAllocation.connection().handshake())
            .sentRequestAtMillis(sentRequestMillis)
            .receivedResponseAtMillis(System.currentTimeMillis())
            .build();

        code = response.code();
    }

    realChain.eventListener()
        .responseHeadersEnd(realChain.call(), response);

    if (forWebSocket && code == 101) {
        // Connection is upgrading, but we need to ensure interceptors see a non-null response body.
        response = response.newBuilder()
            .body(Util.EMPTY_RESPONSE)
            .build();
    } else {
        response = response.newBuilder()
            .body(httpCodec.openResponseBody(response))
            .build();
    }

    if ("close".equalsIgnoreCase(response.request().header("Connection"))
        || "close".equalsIgnoreCase(response.header("Connection"))) {
            streamAllocation.noNewStreams();
    }

    if ((code == 204 || code == 205) && response.body().contentLength() > 0) {
        throw new ProtocolException(
            "HTTP " + code + " had non-zero Content-Length: " + response.body().contentLength());
    }

    return response;
}

从上面的请求流程图可以看出,OkHttp的拦截器链可谓是其整个框架的精髓,用户可传入的 interceptor 分为两类:
①一类是全局的 interceptor,该类 interceptor 在整个拦截器链中最早被调用,通过 OkHttpClient.Builder#addInterceptor(Interceptor) 传入;
②另外一类是非网页请求的 interceptor ,这类拦截器只会在非网页请求中被调用,并且是在组装完请求之后,真正发起网络请求前被调用,所有的 interceptor 被保存在 List interceptors 集合中,按照添加顺序来逐个调用,具体可参考 RealCall#getResponseWithInterceptorChain() 方法。通过 OkHttpClient.Builder#addNetworkInterceptor(Interceptor) 传入;
Android Okhttp主流程源码分析_第2张图片

相关阅读

  • 1.Okhttp3的基本使用
  • 2.Okhttp3主流程源码分析
  • 3.Okhttp3架构分析

你可能感兴趣的:(Android,第三方应用)