- K近邻算法_分类鸢尾花数据集
_feivirus_
算法机器学习和数学分类机器学习K近邻
importnumpyasnpimportpandasaspdfromsklearn.datasetsimportload_irisfromsklearn.model_selectionimporttrain_test_splitfromsklearn.metricsimportaccuracy_score1.数据预处理iris=load_iris()df=pd.DataFrame(data=ir
- 如何“选择不同的“?跨越 pandas 中的多个数据框列?
潮易
pandas
在pandas中,如果你想要选择不同的列,你可以使用DataFrame的loc属性和iloc属性的组合。loc属性是基于标签的,iloc属性则是基于索引的。如果你想要选择多个列,你只需要将它们放入一个列表即可。以下是一个代码示例:```pythonimportpandasaspd#创建一个数据框df=pd.DataFrame({'A':[1,2,3],'B':[4,5,6],'C':[7,8,9]
- 详解 Pandas 的 query 函数
文刀小桂
Pandaspandaspython开发语言
Pandas的query()方法能够使用字符串表达式来筛选DataFrame数据的行,类似于SQL的where子句importpandasaspddf=pd.DataFrame({"A":[1,3,5,6,7],"B":[11,10,9,8,12],"C":["hello","pandas","python","java","shell"],"D":["2024-02-01","2023-12-1
- 详解 Pandas 的 isin 用法
文刀小桂
Pandaspandaspython
Pandas的isin()方法可以判断数据值是否在某个数据集合中,若与集合中的某个值相等则返回True,反之返回False。importpandasaspddf=pd.DataFrame({"title":["one","two","three","four"],"type":["small","common","middle","large"],"num":[10,20,30,40]})#1.判
- groupby 中如何显示 tqdm 的进度条?
domodo2020
在循环时调用tqdm显示进度已经是一个常规操作,常见的方式是foriiintqdm(...):...while循环的情况类似,whileicntintqdm(range(n)):...icnt+=1这里记录没有显式循环时,在groupby中的用法:importpandasaspdimportnumpyasnpfromtqdmimporttqdmdf=pd.DataFrame(np.random.r
- 【Python】 写入Pandas DataFrame到CSV文件
civilpy
pythonpandas开发语言
基本原理Pandas是一个强大的Python数据分析库,它提供了许多用于数据处理和分析的功能。在处理数据时,我们经常需要将数据保存到文件中,以便后续使用或分享。CSV(Comma-SeparatedValues,逗号分隔值)文件是一种常见的数据交换格式,它以纯文本形式存储表格数据,每行表示一个数据记录,列之间用逗号分隔。DataFrame是Pandas中用于存储表格数据的主要数据结构。它类似于Ex
- Python酷库之旅-第三方库Pandas(115)
神奇夜光杯
pythonpandas开发语言人工智能标准库及第三方库excel学习与成长
目录一、用法精讲506、pandas.DataFrame.rank方法506-1、语法506-2、参数506-3、功能506-4、返回值506-5、说明506-6、用法506-6-1、数据准备506-6-2、代码示例506-6-3、结果输出507、pandas.DataFrame.round方法507-1、语法507-2、参数507-3、功能507-4、返回值507-5、说明507-6、用法507
- JS浮点数(小数)计算加减乘除
世界太过浮夸
JavaScript
/****除法函数,用来得到精确的除法结果**说明:javascript的除法结果会有误差,在两个浮点数相除的时候会比较明显。这个函数返回较为精确的除法结果。**调用:accDiv(arg1,arg2)**返回值:arg1除以arg2的精确结果**/functionaccDiv(arg1,arg2){vart1=0,t2=0,r1,r2;try{t1=arg1.toString().split("
- pandas中的loc和iloc
白日与明月
python数据挖掘pandas
loc和iloc的比较.loc和.iloc是pandas提供的两种不同的索引方法,它们的主要区别在于索引数据的依据:.loc:基于标签的索引,使用DataFrame或Series的索引标签(即行名和列名)来获取数据。可以使用单个标签、标签列表、标签切片、布尔数组或者callable函数作为索引器。如果使用标签索引并且标签不存在,.loc会抛出一个KeyError。对于切片,包括两端的标签。.ilo
- pandas中loc和iloc的区别
林光虚霁晓
数据分析pandas
在Pandas中,loc和iloc是用于选择和过滤数据的两种主要方法,它们的区别在于使用的索引类型。1.loc:基于标签索引loc是基于行或列的标签(label)来选择数据。它可以按行或列的名称来访问数据,也可以通过布尔索引选择。支持的索引类型:行标签、列标签、布尔索引。语法:DataFrame.loc[row_indexer,column_indexer]示例importpandasaspd#创
- seurat自学笔记1.0 单细胞数据导入
Sanye2022
pythonpandas
Python读取.h5ad文件importanndataimportpandasaspdadata=anndata.read("/home/R/R_data/Seurat/PBMC10/output/adata.h5ad")#adata.X.todense()#将稀疏矩阵转成普通矩阵#X=pd.DataFrame(adata.X.todense())#cell_name=adata.obs.ind
- Pandas教程:详解Pandas数据清洗
旦莫
PythonPandaspythonpandas数据分析
目录1.引言2.Pandas基础2.1安装与导入2.2创建一个复杂的DataFrame3.数据清洗流程3.1处理缺失值3.1.1删除缺失值3.1.2填充缺失值3.2数据去重3.3数据类型转换4.数据处理与变换4.1添加与删除列4.2数据排序5.数据分组与聚合6.其他数据清洗方法6.1字符串处理6.2时间序列处理6.3数据类型转换1.引言数据清洗是数据科学和数据分析中的一个重要步骤,旨在提升数据的质
- python的pandas库
帅维维
pythonpandas开发语言
什么是pandasPandas是一个开源的第三方Python库,它从Numpy和Matplotlib的基础上构建而来,享有数据分析“三剑客之一”的盛名。Pandas已经成为Python数据分析的必备高级工具,目标是成为强大、灵活、可以支持任何编程语言的数据分析工具。数据结构Pandas中除了Panel数据结构,还引入了两种新的数据结构——Series和DataFrame,这两种数据结构都建立在Nu
- Python数据框操作 -- DataFrame列名和索引设置
wodertianna
pythonpandas机器学习
先创建一个数据框:importpandasaspddf=pd.DataFrame({'a':[1,1,2,3,4],'b':[5,6,7,8,8]})重新设置数据框的列名,使数据框的列名为“A”和“B”:df.columns=['A','B'] 设置A列为数据框的索引:df1=df.set_index('A',drop=True) #drop=True表示不保留A列在数据框,drop=False
- Python DataFrame批量添加新列
愤怒的汽水
python基础知识机器学习
在处理数据的时候我想批量增加新的列,但是一般的情况下dataframe只能新增一个列(我查询了很多博客都是这么写的,我也没有找到好方法,本人愚钝,用创建新df和拼接的方法进行批量操作)本人错误的地方我会写在最后面,有时间的话可以看看共勉。df1=pd.DataFrame()#创建新DFdf1=df1.append([[1,2,3]])print
- Spark面试题
golove666
面试题大全spark大数据分布式面试
Spark面试题1.Spark基础概念1.1解释Spark是什么以及它的主要特点Spark是什么?Spark的主要特点1.2描述Spark运行时架构和组件主要的Spark架构组件:1.3讲述Spark中的弹性分布式数据集(RDD)和数据帧(DataFrame)弹性分布式数据集(RDD)主要特征:创建和转换:使用场景:数据帧(DataFrame)主要特征:创建和操作:使用场景:RDD与DataFra
- [python] 一个例子初步学习DataFrame _ 修改列名
Jean2257
pythonpythonDataFrame
例子:假设有4家公司,他们都在2个省份有自己的业务,用统计量v1,v2进行描述,现在需要对这些数据进行一定的分析.#-*-coding:utf-8-*-importpandasaspdlist1=[1,2,3,4,5,6,7,8]list4=[8,7,6,5,4,3,2,1]list2=['a','a','a','a','b','b','b','b']list3=['c1','c2','c3','
- Python DataFrame 给列命名
Python老吕
pythonpandas开发语言DataFrameDataFrame给列命名Python给列命名给列命名
PythonDataFrame给列命名PythonDataFrame给列命名一、在创建DataFrame时给列命名示例1:从字典创建DataFrame示例2:从列表的列表创建DataFrame,并指定列名示例3:从Series组成的字典创建DataFrame示例4:从具有默认索引的列表的列表创建DataFrame,并指定列名和行索引二、在读取数据时给列命名示例1:从CSV文件读取数据,并指定列名示
- mxgraph创建流程实现简单的加减乘除
lost_wen
mxgraphmxgraph
html{min-width:800px;}body{margin:0auto;font-size:12px;height:550px;}input.form-control,button.btn{font-size:12px;height:25px;line-height:12px;}#container{width:100%;height:500px;overflow:hidden;backg
- python基础:pkl格式文件
Galaxy.404
Python基础python
一、pkl格式文件简介pkl格式文件,全称pickle,Python中一种用于序列化对象的文件格式。以字典(dict)、数据框(DataFrame)或任何其他数据类型的形式作为数据集使用的时候,可能希望将它们保存到文件中,以便以后可以使用它们或将它们发送给其他人。这就是Python的pickle模块的用途:它将对象序列化,以便将它们保存到文件中,并在以后再次加载到程序中。Pickling允许将py
- Python | 使用Pandas DataFrame时的内存泄漏问题及示例
python收藏家
python数据科学python
Pandas是一个功能强大且广泛使用的Python开源数据分析和操作库。它提供了一个DataFrame对象,允许您以非常直观的方式存储和操作行和列中的表格数据。PandasDataFrames是处理数据的强大工具,但如果不小心使用,它们也可能成为内存泄漏的来源。当程序分配了要使用的内存,但在不再需要时未能正确释放该内存时,就会发生内存泄漏。这可能会导致程序随着时间的推移使用越来越多的内存,从而可能
- 数学总结
王颢霖
本学期的数学之旅一定是特别有意思的,可以说所有学习的东西和分数都脱不开干系,因为从上学期开始,我们开始学习分数,分数在三四年级我们也不少有接触,但是在五年级到六年级,我们真正钻研的时候,我们发现分数并不是我们想的那么简单。因为分数不但涉及到加减乘除法,而且还有很多约分通分这些化简,但是在我们搞懂其原理之后,发现分数可以和很多东西连接起来,像百分比,整数比还有很多其他的东西,而在学习分数的同时我们还
- 解决: ImportError: Missing optional dependency ‘openpyxl’. Use pip or conda to install openpyxl.
白舟的博客
抠脑问题pipconda
问题:使用代码时:importpandasaspd#替换为你的Excel文件路径excel_path='path_to_your_excel_file.xlsx'#使用pandas的read_excel函数读取Excel文件df=pd.read_excel(excel_path)#将DataFrame转换为数组data_array=df.values#打印数组print(data_array)然后
- pandas读取带有表头的数据文件,读取无表头的数据文件
小桥流水---人工智能
人工智能深度学习Python程序代码pandas
在Python中使用pandas库读取数据时,常见的问题之一就是如何处理数据文件中的表头。1.引入pandas库在开始之前,我们首先需要导入pandas库。如果你的环境中还未安装pandas,可以使用pip安装:pipinstallpandas导入pandas库:importpandasaspd2.读取带有表头的数据文件当数据文件中包含表头时,pandas会默认将第一行数据作为DataFrame的
- Python数据分析之pandas学习!
Python_trys
python数据分析pandas开发语言学习ide
Python中的pandas模块进行数据分析。接下来pandas介绍中将学习到如下8块内容:1、数据结构简介:DataFrame和Series2、数据索引index3、利用pandas查询数据4、利用pandas的DataFrames进行统计分析5、利用pandas实现SQL操作6、利用pandas进行缺失值的处理7、利用pandas实现Excel的数据透视表功能8、多层索引的使用在文章开始前打个
- pandas中的concat函数:详尽指南
小桥流水---人工智能
Python程序代码人工智能机器学习算法pandas
concat目录1.`concat`简介2.语法和参数3.连接DataFrame按行连接(axis=0)按列连接(axis=1)4.处理索引忽略索引使用键5.添加层次索引6.合并DataFrame7.最佳实践和提示8.结论concat函数是pandas库中一个强大的工具,用于沿特定轴连接多个DataFrame或Series对象。本指南将深入介绍concat函数,涵盖其语法、参数和实际示例。目录co
- Python Pandas将 DataFrame 转换为列表详解
Rocky006
pythonpandas开发语言数据分析
概要在数据分析和处理过程中,经常会使用到Pandas库来处理和操作数据。Pandas提供了灵活强大的数据结构DataFrame,它可以存储和处理各种类型的数据,并提供了丰富的方法和函数来进行数据操作。有时候,我们需要将DataFrame转换为列表形式,以便进一步处理或者与其他库进行集成。本文将详细介绍如何使用Pandas将DataFrame转换为列表,并提供丰富的示例代码来帮助读者更好地理解和应用
- Python酷库之旅-第三方库Pandas(112)
神奇夜光杯
pythonpandas开发语言人工智能标准库及第三方库excel学习与成长
目录一、用法精讲491、pandas.DataFrame.cumsum方法491-1、语法491-2、参数491-3、功能491-4、返回值491-5、说明491-6、用法491-6-1、数据准备491-6-2、代码示例491-6-3、结果输出492、pandas.DataFrame.describe方法492-1、语法492-2、参数492-3、功能492-4、返回值492-5、说明492-6、
- Pandas 统计分析基础----教材知识(1)
Extrella_
pandas
目录Pandas中的结构数据SeriesDataFramePandas中的结构数据pandas的三种常用数据结构说明Series类似数组一种一维数组对象,包含一个值序列,并且包含数据标签,称为索引(index),通过索引来访问数组中的数据。DataFrame类似表格一个表格型的数据结构,它含有一组有序的列,每列可以是不同类型的值(数值、字符串、布尔值等)。DataFrame既有行索引也有列索引,它
- Pandas 统计分析基础----教材知识(2)
Extrella_
pandas学习python
目录Pandas索引操作重建索引总结-----reindex的常用参数及其说明更换索引DataFrame数据的查询与编辑DataFrame数据的查询DataFrame数据的编辑Pandas数据运算算术运算Series相加/减/乘/除/求余/(**)DataFrame类型的数据相加/减/乘/除/求余/(**)函数应用与映射排序汇总与统计Pandas中常用的描述性统计方法Pandas索引操作重建索引说
- ios内付费
374016526
ios内付费
近年来写了很多IOS的程序,内付费也用到不少,使用IOS的内付费实现起来比较麻烦,这里我写了一个简单的内付费包,希望对大家有帮助。
具体使用如下:
这里的sender其实就是调用者,这里主要是为了回调使用。
[KuroStoreApi kuroStoreProductId:@"产品ID" storeSender:self storeFinishCallBa
- 20 款优秀的 Linux 终端仿真器
brotherlamp
linuxlinux视频linux资料linux自学linux教程
终端仿真器是一款用其它显示架构重现可视终端的计算机程序。换句话说就是终端仿真器能使哑终端看似像一台连接上了服务器的客户机。终端仿真器允许最终用户用文本用户界面和命令行来访问控制台和应用程序。(LCTT 译注:终端仿真器原意指对大型机-哑终端方式的模拟,不过在当今的 Linux 环境中,常指通过远程或本地方式连接的伪终端,俗称“终端”。)
你能从开源世界中找到大量的终端仿真器,它们
- Solr Deep Paging(solr 深分页)
eksliang
solr深分页solr分页性能问题
转载请出自出处:http://eksliang.iteye.com/blog/2148370
作者:eksliang(ickes) blg:http://eksliang.iteye.com/ 概述
长期以来,我们一直有一个深分页问题。如果直接跳到很靠后的页数,查询速度会比较慢。这是因为Solr的需要为查询从开始遍历所有数据。直到Solr的4.7这个问题一直没有一个很好的解决方案。直到solr
- 数据库面试题
18289753290
面试题 数据库
1.union ,union all
网络搜索出的最佳答案:
union和union all的区别是,union会自动压缩多个结果集合中的重复结果,而union all则将所有的结果全部显示出来,不管是不是重复。
Union:对两个结果集进行并集操作,不包括重复行,同时进行默认规则的排序;
Union All:对两个结果集进行并集操作,包括重复行,不进行排序;
2.索引有哪些分类?作用是
- Android TV屏幕适配
酷的飞上天空
android
先说下现在市面上TV分辨率的大概情况
两种分辨率为主
1.720标清,分辨率为1280x720.
屏幕尺寸以32寸为主,部分电视为42寸
2.1080p全高清,分辨率为1920x1080
屏幕尺寸以42寸为主,此分辨率电视屏幕从32寸到50寸都有
适配遇到问题,已1080p尺寸为例:
分辨率固定不变,屏幕尺寸变化较大。
如:效果图尺寸为1920x1080,如果使用d
- Timer定时器与ActionListener联合应用
永夜-极光
java
功能:在控制台每秒输出一次
代码:
package Main;
import javax.swing.Timer;
import java.awt.event.*;
public class T {
private static int count = 0;
public static void main(String[] args){
- Ubuntu14.04系统Tab键不能自动补全问题解决
随便小屋
Ubuntu 14.04
Unbuntu 14.4安装之后就在终端中使用Tab键不能自动补全,解决办法如下:
1、利用vi编辑器打开/etc/bash.bashrc文件(需要root权限)
sudo vi /etc/bash.bashrc
接下来会提示输入密码
2、找到文件中的下列代码
#enable bash completion in interactive shells
#if
- 学会人际关系三招 轻松走职场
aijuans
职场
要想成功,仅有专业能力是不够的,处理好与老板、同事及下属的人际关系也是门大学问。如何才能在职场如鱼得水、游刃有余呢?在此,教您简单实用的三个窍门。
第一,多汇报
最近,管理学又提出了一个新名词“追随力”。它告诉我们,做下属最关键的就是要多请示汇报,让上司随时了解你的工作进度,有了新想法也要及时建议。不知不觉,你就有了“追随力”,上司会越来越了解和信任你。
第二,勤沟通
团队的力
- 《O2O:移动互联网时代的商业革命》读书笔记
aoyouzi
读书笔记
移动互联网的未来:碎片化内容+碎片化渠道=各式精准、互动的新型社会化营销。
O2O:Online to OffLine 线上线下活动
O2O就是在移动互联网时代,生活消费领域通过线上和线下互动的一种新型商业模式。
手机二维码本质:O2O商务行为从线下现实世界到线上虚拟世界的入口。
线上虚拟世界创造的本意是打破信息鸿沟,让不同地域、不同需求的人
- js实现图片随鼠标滚动的效果
百合不是茶
JavaScript滚动属性的获取图片滚动属性获取页面加载
1,获取样式属性值
top 与顶部的距离
left 与左边的距离
right 与右边的距离
bottom 与下边的距离
zIndex 层叠层次
例子:获取左边的宽度,当css写在body标签中时
<div id="adver" style="position:absolute;top:50px;left:1000p
- ajax同步异步参数async
bijian1013
jqueryAjaxasync
开发项目开发过程中,需要将ajax的返回值赋到全局变量中,然后在该页面其他地方引用,因为ajax异步的原因一直无法成功,需将async:false,使其变成同步的。
格式:
$.ajax({ type: 'POST', ur
- Webx3框架(1)
Bill_chen
eclipsespringmaven框架ibatis
Webx是淘宝开发的一套Web开发框架,Webx3是其第三个升级版本;采用Eclipse的开发环境,现在支持java开发;
采用turbine原型的MVC框架,扩展了Spring容器,利用Maven进行项目的构建管理,灵活的ibatis持久层支持,总的来说,还是一套很不错的Web框架。
Webx3遵循turbine风格,velocity的模板被分为layout/screen/control三部
- 【MongoDB学习笔记五】MongoDB概述
bit1129
mongodb
MongoDB是面向文档的NoSQL数据库,尽量业界还对MongoDB存在一些质疑的声音,比如性能尤其是查询性能、数据一致性的支持没有想象的那么好,但是MongoDB用户群确实已经够多。MongoDB的亮点不在于它的性能,而是它处理非结构化数据的能力以及内置对分布式的支持(复制、分片达到的高可用、高可伸缩),同时它提供的近似于SQL的查询能力,也是在做NoSQL技术选型时,考虑的一个重要因素。Mo
- spring/hibernate/struts2常见异常总结
白糖_
Hibernate
Spring
①ClassNotFoundException: org.aspectj.weaver.reflect.ReflectionWorld$ReflectionWorldException
缺少aspectjweaver.jar,该jar包常用于spring aop中
②java.lang.ClassNotFoundException: org.sprin
- jquery easyui表单重置(reset)扩展思路
bozch
formjquery easyuireset
在jquery easyui表单中 尚未提供表单重置的功能,这就需要自己对其进行扩展。
扩展的时候要考虑的控件有:
combo,combobox,combogrid,combotree,datebox,datetimebox
需要对其添加reset方法,reset方法就是把初始化的值赋值给当前的组件,这就需要在组件的初始化时将值保存下来。
在所有的reset方法添加完毕之后,就需要对fo
- 编程之美-烙饼排序
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
/*
*《编程之美》的思路是:搜索+剪枝。有点像是写下棋程序:当前情况下,把所有可能的下一步都做一遍;在这每一遍操作里面,计算出如果按这一步走的话,能不能赢(得出最优结果)。
*《编程之美》上代码有很多错误,且每个变量的含义令人费解。因此我按我的理解写了以下代码:
*/
- Struts1.X 源码分析之ActionForm赋值原理
chenbowen00
struts
struts1在处理请求参数之前,首先会根据配置文件action节点的name属性创建对应的ActionForm。如果配置了name属性,却找不到对应的ActionForm类也不会报错,只是不会处理本次请求的请求参数。
如果找到了对应的ActionForm类,则先判断是否已经存在ActionForm的实例,如果不存在则创建实例,并将其存放在对应的作用域中。作用域由配置文件action节点的s
- [空天防御与经济]在获得充足的外部资源之前,太空投资需有限度
comsci
资源
这里有一个常识性的问题:
地球的资源,人类的资金是有限的,而太空是无限的.....
就算全人类联合起来,要在太空中修建大型空间站,也不一定能够成功,因为资源和资金,技术有客观的限制....
&
- ORACLE临时表—ON COMMIT PRESERVE ROWS
daizj
oracle临时表
ORACLE临时表 转
临时表:像普通表一样,有结构,但是对数据的管理上不一样,临时表存储事务或会话的中间结果集,临时表中保存的数据只对当前
会话可见,所有会话都看不到其他会话的数据,即使其他会话提交了,也看不到。临时表不存在并发行为,因为他们对于当前会话都是独立的。
创建临时表时,ORACLE只创建了表的结构(在数据字典中定义),并没有初始化内存空间,当某一会话使用临时表时,ORALCE会
- 基于Nginx XSendfile+SpringMVC进行文件下载
denger
应用服务器Webnginx网络应用lighttpd
在平常我们实现文件下载通常是通过普通 read-write方式,如下代码所示。
@RequestMapping("/courseware/{id}")
public void download(@PathVariable("id") String courseID, HttpServletResp
- scanf接受char类型的字符
dcj3sjt126com
c
/*
2013年3月11日22:35:54
目的:学习char只接受一个字符
*/
# include <stdio.h>
int main(void)
{
int i;
char ch;
scanf("%d", &i);
printf("i = %d\n", i);
scanf("%
- 学编程的价值
dcj3sjt126com
编程
发一个人会编程, 想想以后可以教儿女, 是多么美好的事啊, 不管儿女将来从事什么样的职业, 教一教, 对他思维的开拓大有帮助
像这位朋友学习:
http://blog.sina.com.cn/s/articlelist_2584320772_0_1.html
VirtualGS教程 (By @林泰前): 几十年的老程序员,资深的
- 二维数组(矩阵)对角线输出
飞天奔月
二维数组
今天在BBS里面看到这样的面试题目,
1,二维数组(N*N),沿对角线方向,从右上角打印到左下角如N=4: 4*4二维数组
{ 1 2 3 4 }
{ 5 6 7 8 }
{ 9 10 11 12 }
{13 14 15 16 }
打印顺序
4
3 8
2 7 12
1 6 11 16
5 10 15
9 14
13
要
- Ehcache(08)——可阻塞的Cache——BlockingCache
234390216
并发ehcacheBlockingCache阻塞
可阻塞的Cache—BlockingCache
在上一节我们提到了显示使用Ehcache锁的问题,其实我们还可以隐式的来使用Ehcache的锁,那就是通过BlockingCache。BlockingCache是Ehcache的一个封装类,可以让我们对Ehcache进行并发操作。其内部的锁机制是使用的net.
- mysqldiff对数据库间进行差异比较
jackyrong
mysqld
mysqldiff该工具是官方mysql-utilities工具集的一个脚本,可以用来对比不同数据库之间的表结构,或者同个数据库间的表结构
如果在windows下,直接下载mysql-utilities安装就可以了,然后运行后,会跑到命令行下:
1) 基本用法
mysqldiff --server1=admin:12345
- spring data jpa 方法中可用的关键字
lawrence.li
javaspring
spring data jpa 支持以方法名进行查询/删除/统计。
查询的关键字为find
删除的关键字为delete/remove (>=1.7.x)
统计的关键字为count (>=1.7.x)
修改需要使用@Modifying注解
@Modifying
@Query("update User u set u.firstna
- Spring的ModelAndView类
nicegege
spring
项目中controller的方法跳转的到ModelAndView类,一直很好奇spring怎么实现的?
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* yo
- 搭建 CentOS 6 服务器(13) - rsync、Amanda
rensanning
centos
(一)rsync
Server端
# yum install rsync
# vi /etc/xinetd.d/rsync
service rsync
{
disable = no
flags = IPv6
socket_type = stream
wait
- Learn Nodejs 02
toknowme
nodejs
(1)npm是什么
npm is the package manager for node
官方网站:https://www.npmjs.com/
npm上有很多优秀的nodejs包,来解决常见的一些问题,比如用node-mysql,就可以方便通过nodejs链接到mysql,进行数据库的操作
在开发过程往往会需要用到其他的包,使用npm就可以下载这些包来供程序调用
&nb
- Spring MVC 拦截器
xp9802
spring mvc
Controller层的拦截器继承于HandlerInterceptorAdapter
HandlerInterceptorAdapter.java 1 public abstract class HandlerInterceptorAdapter implements HandlerIntercep