Root :: Problem Set Volumes (100...1999) :: Volume 9 (900-999) | |
10048 - AudiophobiaTime limit: 3.000 seconds |
Problem B: Audiophobia |
Consider yourself lucky! Consider yourself lucky to be still breathing and having fun participating in this contest. But we apprehend that many of your descendants may not have this luxury. For, as you know, we are the dwellers of one of the most polluted cities on earth. Pollution is everywhere, both in the environment and in society and our lack of consciousness is simply aggravating the situation.
However, for the time being, we will consider only one type of pollution - the sound pollution. The loudness or intensity level of sound is usually measured in decibels and sound having intensity level 130 decibels or higher is considered painful. The intensity level of normal conversation is 6065 decibels and that of heavy traffic is 7080 decibels.
Consider the following city map where the edges refer to streets and the nodes refer to crossings. The integer on each edge is the average intensity level of sound (in decibels) in the corresponding street.
To get from crossing A to crossing G you may follow the following path: ACFG. In that case you must be capable of tolerating sound intensity as high as 140 decibels. For the paths ABEG, ABDG and ACFDG you must tolerate respectively 90, 120 and 80 decibels of sound intensity. There are other paths, too. However, it is clear that ACFDG is the most comfortable path since it does not demand you to tolerate more than 80 decibels.
In this problem, given a city map you are required to determine the minimum sound intensity level you must be able to tolerate in order to get from a given crossing to another.
Input
The input may contain multiple test cases.
The first line of each test case contains three integers , and where Cindicates the number of crossings (crossings are numbered using distinct integers ranging from 1 to C), Srepresents the number of streets and Q is the number of queries.
Each of the next S lines contains three integers: c1, c2 and d indicating that the average sound intensity level on the street connecting the crossings c1 and c2 ( ) is d decibels.
Each of the next Q lines contains two integers c1 and c2 ( ) asking for the minimum sound intensity level you must be able to tolerate in order to get from crossing c1 to crossing c2.
The input will terminate with three zeros form C, S and Q.
Output
For each test case in the input first output the test case number (starting from 1) as shown in the sample output. Then for each query in the input print a line giving the minimum sound intensity level (in decibels) you must be able to tolerate in order to get from the first to the second crossing in the query. If there exists no path between them just print the line ``no path".
Print a blank line between two consecutive test cases.
Sample Input
7 9 3 1 2 50 1 3 60 2 4 120 2 5 90 3 6 50 4 6 80 4 7 70 5 7 40 6 7 140 1 7 2 6 6 2 7 6 3 1 2 50 1 3 60 2 4 120 3 6 50 4 6 80 5 7 40 7 5 1 7 2 4 0 0 0
Sample Output
Case #1 80 60 60 Case #2 40 no path 80
本来就是道水题,但是貌似被学弟问道把点数改成10^4,边数改成10^5,询问改成10^5,求任意两点间的路径上的最大值最小怎么做,觉得有必要去拍一下,结果就真是觉得不做死就不会死,最后把两种解法写到了一起,于是代码量就突破天际了,呜呜,哭了。。。。。。
因为可能最后的生成的是森林,那么就用正常的Floyd做,当是一棵生成树的时候,树链剖分就来了,唉,表示我只是来测试的,代码已经不忍目视了。
当然还有一种做法就是模拟kruskal的过程,一条边一条边的加入树中,每加入一次,就判断起点和终点是否在一个集合里, 一旦他们在一个集合里了,那么那条路径中的最大值便是当前加入的这条边的权值,因为加入的边是按照从小到大顺序加入的。
1 #include2 #include 3 #include 4 #include 5 #define maxn 100010 6 #define inf 0x3f3f3f3f 7 using namespace std; 8 int n,m,q; 9 struct spanning_tree{ 10 int u,v,l; 11 friend bool operator<(spanning_tree a,spanning_tree b){ 12 return a.l<b.l; 13 } 14 }st[maxn]; 15 int fa[maxn],dp[110][110]; 16 void build_spanning_tree(int nn){ 17 for(int i=0;i<=nn;i++) fa[i]=i; 18 } 19 int find(int x){ 20 if(x!=fa[x]) fa[x]=find(fa[x]); 21 return fa[x]; 22 } 23 void union_set(int x,int y){ 24 int xx=find(x),yy=find(y); 25 if(xx==yy) return; 26 fa[xx]=yy; 27 } 28 struct edge{ 29 int v,l,next; 30 }e[maxn*2]; 31 int head[maxn],tol; 32 void init(){ 33 tol=0; 34 memset(head,-1,sizeof head); 35 } 36 void addedge(int u,int v,int l){ 37 e[tol].v=v,e[tol].l=l,e[tol].next=head[u],head[u]=tol++; 38 } 39 void read(){ 40 memset(dp,0x3f,sizeof dp); 41 for(int i=0;i ){ 42 scanf("%d%d%d",&st[i].u,&st[i].v,&st[i].l); 43 } 44 sort(st,st+m); 45 build_spanning_tree(n); 46 init(); 47 for(int i=0;i ){ 48 int x=find(st[i].u),y=find(st[i].v); 49 if(x!=y){ 50 union_set(x,y); 51 dp[st[i].u][st[i].v]=dp[st[i].v][st[i].u]=st[i].l; 52 //cout< 53 addedge(st[i].u,st[i].v,st[i].l); 54 addedge(st[i].v,st[i].u,st[i].l); 55 } 56 } 57 } 58 int size[maxn],dep[maxn],son[maxn],pre[maxn],w[maxn],len[maxn]; 59 int tn; 60 void dfs(int u,int fa){ 61 size[u]=1,son[u]=u,pre[u]=fa; 62 for(int i=head[u];i!=-1;i=e[i].next){ 63 int v=e[i].v; 64 if(v!=fa){ 65 dep[v]=dep[u]+1; 66 dfs(v,u); 67 if(size[v]>=size[son[u]]) son[u]=v; 68 size[u]+=size[v]; 69 } 70 } 71 } 72 void build_tree(int x,int f){ 73 w[x]=tn++,fa[x]=f; 74 for(int i=head[x];i!=-1;i=e[i].next){ 75 if(e[i].v==son[x]){ 76 len[tn]=e[i].l,build_tree(son[x],fa[x]); 77 break; 78 } 79 } 80 for(int i=head[x];i!=-1;i=e[i].next){ 81 int v=e[i].v; 82 if(v!=pre[x]&&v!=son[x]){ 83 len[tn]=e[i].l; 84 build_tree(v,v); 85 } 86 } 87 } 88 struct tree{ 89 int l,r,maxv; 90 }a[maxn*4]; 91 void build(int l,int r,int k){ 92 a[k].l=l,a[k].r=r; 93 if(l==r){ 94 a[k].maxv=len[l]; 95 }else{ 96 int mid=(l+r)>>1; 97 build(l,mid,k<<1); 98 build(mid+1,r,k<<1|1); 99 a[k].maxv=max(a[k<<1].maxv,a[k<<1|1].maxv); 100 } 101 } 102 int query(int l,int r,int k){ 103 if(l<=a[k].l&&a[k].r<=r){ 104 return a[k].maxv; 105 }else{ 106 int mid=(a[k].l+a[k].r)>>1; 107 if(r<=mid) return query(l,r,k<<1); 108 else if(l>mid) return query(l,r,k<<1|1); 109 else return max(query(l,mid,k<<1),query(mid+1,r,k<<1|1)); 110 } 111 } 112 int cal(int x,int y){ 113 int ret=0; 114 while(fa[x]!=fa[y]&&x!=y){ 115 if(dep[fa[x]]>dep[fa[y]]) swap(x,y); 116 //cout< 153 scanf("%d%d",&u,&v); 154 if(dp[u][v]==inf) printf("no path\n"); 155 else printf("%d\n",dp[u][v]); 156 } 157 } 158 void solve(int cas){ 159 if(!check_tree()){gao_floyd(cas);return;} 160 dep[1]=0,tn=0,len[0]=0; 161 memset(son,0,sizeof son); 162 dfs(1,1); 163 build_tree(1,1); 164 build(0,tn-1,1); 165 int u,v; 166 if(cas>1) printf("\n"); 167 printf("Case #%d\n",cas); 168 for(int i=0;i117 ret=max(ret,query(w[fa[y]],w[y],1)); 118 y=pre[y]; 119 } 120 if(x==y) return ret; 121 if(dep[x] ,w[y],1)); 122 else ret=max(ret,query(w[y]+1,w[x],1)); 123 return ret; 124 } 125 bool vis[110]; 126 void check_dfs(int u){ 127 vis[u]=1; 128 for(int i=head[u];i!=-1;i=e[i].next){ 129 if(!vis[e[i].v]) check_dfs(e[i].v); 130 } 131 } 132 bool check_tree(){ 133 memset(vis,0,sizeof vis); 134 int ct=0; 135 for(int i=1;i<=n;i++){ 136 if(!vis[i]) ct++,check_dfs(i); 137 } 138 return ct==1; 139 } 140 void gao_floyd(int cas){ 141 for(int k=1;k<=n;k++){ 142 for(int i=1;i<=n;i++){ 143 for(int j=1;j<=n;j++){ 144 if(dp[i][k]!=inf&&dp[k][j]!=inf) 145 dp[i][j]=min(dp[i][j],max(dp[i][k],dp[k][j])); 146 } 147 } 148 } 149 int u,v; 150 if(cas>1) printf("\n"); 151 printf("Case #%d\n",cas); 152 for(int i=0;i1 ){){ 169 scanf("%d%d",&u,&v); 170 if(u<1||v<1||u>n||v>n) printf("no path\n"); 171 else printf("%d\n",cal(u,v)); 172 } 173 } 174 int main(){ 175 //freopen("10048.txt","w",stdout); 176 int cas=1; 177 while(~scanf("%d%d%d",&n,&m,&q)){ 178 if(n==0&&m==0&&q==0) break; 179 read(); 180 solve(cas++); 181 } 182 return 0; 183 }