平台信息:
内核:linux3.1.0
系统:android/android6.0
平台:RK3288
作者:庄泽彬(欢迎转载,请注明作者)
说明:提供以太网mac地址烧录以及读写的方式
一、功能演示以及说明:
1.1在安卓的文件系统生成如下的设备节点:/sys/kernel/pax_ethernet/mac用于烧录以及读取以太网的mac地址。使用adb命令进行以太网mac地址的烧写以及读写。本质上在使用echo "aa:aa:aa:aa:aa:aa" > /sys/kernel/pax_ethernet/mac这个命令的时候会调用kernel的底层驱动往我们存放的mac地址的分区写入以太网的mac地址。我们的需求是在烧录了以太网的mac地址之后,设备就一直使用我们烧录的mac给网卡设备,不在使用随机数生成mac地址。实现的思路大致如下:在使用adb命令往/sys/kernel/pax_ethernet/mac这个设备节点写入合法的mac地址之后,在重启之后uboot启动的时候会从这烧录mac地址的分区读取烧录mac地址,如果烧录的mac地址合法,就会通过cmdline的机制传递给kernel,kernel的以太网往驱动会解析uboot发送的cmdline,将传递的字符串解析之后,如果合法在赋值给网卡,我在kernel的驱动还做了判断,如果uboot传递的mac地址出错或者读取有异常,kernel会在一次从分区中获取mac地址。好吧,讲了这么多,我们还是看代码是如何实现的吧。
二、uboot读取以太网的mac地址以及传递mac地址给kernel的相关代码片段如下:
2.1这部分代码是我封装的用于读取分区中以太网mac地址的读和写的接口
1 int sp_get_mac(char *value, int len){ 2 3 unsigned blocks,offset_blocks; 4 const disk_partition_t* ptn = get_disk_partition("sp"); 5 6 /* strcpy(value,"0123456789"); */ 7 /* return 0; */ 8 9 offset_blocks = DIV_ROUND_UP(SP_MAC_OFFSET, RK_BLK_SIZE); 10 /* blocks = DIV_ROUND_UP(len, RK_BLK_SIZE); */ 11 12 if (ptn) { 13 return rkloader_CopyFlash2Memory(value,ptn->start+offset_blocks,1); 14 } 15 16 return -1; 17 } 18 19 int sp_set_mac(char *value, int len){ 20 21 unsigned blocks,offset_blocks; 22 const disk_partition_t* ptn = get_disk_partition("sp"); 23 24 offset_blocks = DIV_ROUND_UP(SP_MAC_OFFSET, RK_BLK_SIZE); 25 blocks = DIV_ROUND_UP(len, RK_BLK_SIZE); 26 27 if (ptn) { 28 StorageEraseBlock(ptn->start+offset_blocks, blocks, 1); 29 return rkloader_CopyMemory2Flash(value,ptn->start+offset_blocks,blocks); 30 } 31 32 return -1; 33 }
2.2uboot传递给kernel的相关代码片段:
1 //读取sp分区的mac地址 2 memset(tbuf,0,sizeof(tbuf)); 3 ret = sp_get_mac(tbuf,64); 4 if(ret!=0){ 5 tbuf[0]=0; 6 }else{ 7 if((tbuf[0]==0xff)&&(tbuf[1]==0xff)&&(tbuf[2]==0xff)&&\ 8 (tbuf[3]==0xff)&&(tbuf[4]==0xff)&&(tbuf[5]==0xff)){ 9 tbuf[0]=0; 10 }else if((tbuf[0]==0x00)&&(tbuf[1]==0x00)&&(tbuf[2]==0x00)&&\ 11 (tbuf[3]==0x00)&&(tbuf[4]==0x00)&&(tbuf[5]==0x00)){ 12 tbuf[0]=0; 13 }else{ 14 unsigned char tmp[32]; 15 memset(tmp,0,32); 16 17 sprintf(tmp,"%02x:%02x:%02x:%02x:%02x:%02x",tbuf[0],tbuf[1],tbuf[2],tbuf[3],tbuf[4],tbuf[5]); 18 printf("[%s:%d]mac:%s\r\n",__func__,__LINE__,tmp); 19 snprintf(command_line, len, 20 "%s eth_mac=%s", command_line, tmp); 21 } 22 } 23 tbuf[63]=0;
2.3实验结果如下,具体的代码大家就自己看吧。uboot阶段以及成果读取并且通过cmdline发送mac的地址.
三、kernel的以太网驱动解析cmdline并赋值给以太网的网卡设备。
3.1kernel解析cmdline的相关代码片段如下:查看下面的图片kernel已经成果的获取uboot传递的mac地址
u_char mac_addr_str[18] = {0}; u_char mac_addr[7] = {0}; static int __init get_mac_addr(char *str) { strncpy(mac_addr_str,str,17); printk(KERN_ERR"[%s:%d] mac_addr_str = %s",__func__,__LINE__,mac_addr_str); return 0; } //解析cmdline __setup("eth_mac=",get_mac_addr); module_init(stmmac_init); module_exit(stmmac_exit);
3.2kernel层将传递的mac地址赋值给设备.
u_char char2num(u_char ch) { switch(ch){ case 'a': case 'A': return 10; break; case 'b': case 'B': return 11; break; case 'c': case 'C': return 12; break; case 'd': case 'D': return 13; break; case 'e': case 'E': return 14; break; case 'f': case 'F': return 15; break; default: return 0; } } void str2byte(u_char *str, u_char *byte) { int i=0, j=0; u_char num, n; u_char temp[20] = {0}; for(i=0; i<17; i++){ if(str[i] == ':'){ continue; }else{ temp[j] = str[i]; j++; } } temp[j]='\0'; i=0; while(*(temp+i)!='\0') { if(*(temp+i)>='0' && *(temp+i) <= '9'){ if(i%2 == 0){ //żÊýΪʮλ num = (*(temp+i)-'0') * 16; }else{ num = num + (*(temp+i)-'0'); } i++; }else if((*(temp+i)>='a' && *(temp+i) <= 'f') || (*(temp+i)>='A' && *(temp+i) <= 'F')){ n = char2num(*(temp+i)); if(n == 0){ memset(byte, 0, 6); break; } if(i%2 == 0){ //żÊýΪʮλ num = n * 16; }else{ num = num + n; } i++; }else{ memset(byte, 0, 6); break; } if(i%2 == 0){ *byte++ = num; } } } static ssize_t block_mac_store(const char *buf, size_t count) { if (buf != NULL && strlen(buf)) { write_block_info(BLOCK_NAME, buf, strlen(buf), MAC_ADDR_OFFSET); } return 0; } static ssize_t block_mac_show( char *buf) { char mac_buf[18] = {0}; read_block_info(BLOCK_NAME, mac_buf, 17, MAC_ADDR_OFFSET); printk(KERN_ERR"[%s:%d] mac: %pM\r\n",__func__,__LINE__,mac_buf); return sprintf(buf, "%s", mac_buf); }
//这部分的代码就是赋值将获取的mac地址赋值给网卡设备的主要地方. //cmdline´«µÝµÄmacµØÖ· str2byte(mac_addr_str, mac_addr); printk(KERN_ERR"[%s:%d]%02x:%02x:%02x:%02x:%02x:%02x\r\n",__func__,__LINE__,mac_addr[0],mac_addr[1],mac_addr[2],mac_addr[3],mac_addr[4],mac_addr[5]); if(is_valid_ether_addr(mac_addr)){ priv->dev->dev_addr = mac_addr; printk(KERN_ERR"[%s:%d]\r\n",__func__,__LINE__); } if(!is_valid_ether_addr(priv->dev->dev_addr)){ memset(block_mac_buf,0,sizeof(block_mac_buf)); block_mac_show(block_mac_buf); printk(KERN_ERR"[%s:%d]%02x:%02x:%02x:%02x:%02x:%02x\r\n",__func__,__LINE__,block_mac_buf[0],block_mac_buf[1],block_mac_buf[2],block_mac_buf[3],block_mac_buf[4],block_mac_buf[5]); if(is_valid_ether_addr(block_mac_buf)){ priv->dev->dev_addr = block_mac_buf; printk(KERN_ERR"[%s:%d]\r\n",__func__,__LINE__); } }
四、生成设备/sys/kernel/pax_ethernet/mac的方法如下。
1 + 2 +static ssize_t sys_mac_show(struct kobject *kobj, struct kobj_attribute *attr, 3 + char *buf) 4 +{ 5 + char temp_mac_buf[18]; 6 + 7 + memset(temp_mac_buf,0,sizeof(temp_mac_buf)); 8 + read_block_info(BLOCK_NAME, temp_mac_buf, 18, MAC_ADDR_OFFSET); 9 + printk(KERN_ERR"[%s:%d]%02x:%02x:%02x:%02x:%02x:%02x\r\n",__func__,__LINE__,temp_mac_buf[0],temp_mac_buf[1],temp_mac_buf[2],temp_mac_buf[3],temp_mac_buf[4],temp_mac_buf[5]); 10 + 11 + return sprintf(buf, "%pM\n", temp_mac_buf); 12 +} 13 + 14 +static ssize_t sys_mac_store(struct kobject *kobj, struct kobj_attribute *attr, 15 + const char *buf, size_t count) 16 +{ 17 + u_char mac_addr[7] = {0}; 18 + 19 + printk(KERN_ERR"[%s:%d]%02x:%02x:%02x:%02x:%02x:%02x\r\n",__func__,__LINE__,buf[0],buf[1],buf[2],buf[3],buf[4],buf[5]); 20 + if (buf != NULL && strlen(buf)){ 21 + //memcpy(mac_str, buf, strlen(buf)); 22 + //ַ 23 + str2byte(buf, mac_addr); 24 + printk(KERN_ERR"[%s:%d]%02x:%02x:%02x:%02x:%02x:%02x\r\n",__func__,__LINE__,mac_addr[0],mac_addr[1],mac_addr[2],mac_addr[3],mac_addr[4],mac_addr[5]); 25 + write_block_info(BLOCK_NAME, mac_addr, 6, MAC_ADDR_OFFSET); 26 + } 27 + 28 + return count; 29 +} 30 + 31 +static struct kobj_attribute mac_attribute = 32 + __ATTR(mac, 0666, sys_mac_show, sys_mac_store); 33 + 34 + 35 +static struct attribute *attrs[] = { 36 + &mac_attribute.attr, 37 + NULL, /* need to NULL terminate the list of attributes */ 38 +}; 39 +static struct attribute_group attr_group = { 40 + .attrs = attrs, 41 +}; 42 + 43 +static struct kobject *ethernet_kobj; 44 + 45 46 47 + ethernet_kobj = kobject_create_and_add("pax_ethernet", kernel_kobj); 48 + if (!ethernet_kobj) 49 + return -ENOMEM; 50 + 51 + /* Create the files associated with this kobject */ 52 + ret = sysfs_create_group(ethernet_kobj, &attr_group); 53 + if (ret) 54 + kobject_put(ethernet_kobj); 55 +ת
五、kernel层对分区操作的函数如下:
1 int write_block_info(const char *name, char *data, int length, loff_t offset) 2 { 3 struct file *fp; 4 mm_segment_t fs; 5 6 7 AUTHINFO_DEBUG("%s start, data: %s, length: %d \n",__func__, data, length); 8 9 fp = filp_open(name, O_RDWR | O_CREAT, 0644); 10 if (IS_ERR(fp)) { 11 AUTHINFO_ERROR("create file error"); 12 return -1; 13 } 14 15 fs = get_fs(); 16 set_fs(KERNEL_DS); 17 18 vfs_write(fp, data, length, &offset); 19 20 filp_close(fp, NULL); 21 set_fs(fs); 22 23 AUTHINFO_DEBUG("%s end",__func__); 24 25 return 0; 26 } 27 EXPORT_SYMBOL(write_block_info); 28 29 int read_block_info(const char *name, char *buf, int length, loff_t offset) 30 { 31 struct file *fp; 32 mm_segment_t fs; 33 34 AUTHINFO_DEBUG("%s start",__func__); 35 fp = filp_open(name, O_RDWR | O_CREAT, 0644); 36 if (IS_ERR(fp)) { 37 AUTHINFO_ERROR("create file error"); 38 return -1; 39 } 40 41 fs = get_fs(); 42 set_fs(KERNEL_DS); 43 44 vfs_read(fp, buf, length, &offset); 45 46 47 filp_close(fp, NULL); 48 set_fs(fs); 49 50 AUTHINFO_DEBUG("%s end %d %s",__func__,length,buf); 51 52 return 0; 53 } 54 EXPORT_SYMBOL(read_block_info);
六、最终的结果.查看一下设置以太网的mac地址成功,可以下班了啊。