Hadoop 二次排序

具体步骤:

1 自定义key。

在mr中,所有的key是需要被比较和排序的,并且是二次,先根据partitioner,再根据大小。而本例中也是要比较两次。先按照第一字段排序,然后再对第一字段相同的按照第二字段排序。根据这一点,我们可以构造一个复合类IntPair,他有两个字段,先利用分区对第一字段排序,再利用分区内的比较对第二字段排序。
所有自定义的key应该实现接口WritableComparable,因为是可序列的并且可比较的。并重载方法
//反序列化,从流中的二进制转换成IntPair
public void readFields(DataInput in) throws IOException
       
//序列化,将IntPair转化成使用流传送的二进制
public void write(DataOutput out)

//key的比较
public int compareTo(IntPair o)
       
另外新定义的类应该重写的两个方法
//The hashCode() method is used by the HashPartitioner (the default partitioner in MapReduce)
public int hashCode()
public boolean equals(Object right)

2 由于key是自定义的,所以还需要自定义一下类:

2.1 分区函数类。这是key的第一次比较。
public static class FirstPartitioner extends Partitioner

在job中设置使用setPartitionerClasss

2.2 key比较函数类。这是key的第二次比较。这是一个比较器,需要继承WritableComparator。
public static class KeyComparator extends WritableComparator
必须有一个构造函数,并且重载 public int compare(WritableComparable w1, WritableComparable w2)
另一种方法是 实现接口RawComparator。
在job中设置使用setSortComparatorClass。

2.3 分组函数类。在reduce阶段,构造一个key对应的value迭代器的时候,只要first相同就属于同一个组,放在一个value迭代器。这是一个比较器,需要继承WritableComparator。
public static class GroupingComparator extends WritableComparator
同key比较函数类,必须有一个构造函数,并且重载 public int compare(WritableComparable w1, WritableComparable w2)
同key比较函数类,分组函数类另一种方法是实现接口RawComparator。
在job中设置使用setGroupingComparatorClass。

另外注意的是,如果reduce的输入与输出不是同一种类型,则不要定义Combiner也使用reduce,因为Combiner的输出是reduce的输入。除非重新定义一个Combiner。

4 代码。这个例子中没有使用key比较函数类,而是使用key的实现的compareTo方法

 package secondarySort;
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.WritableComparable;
import org.apache.hadoop.io.WritableComparator;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Partitioner;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;

public class SecondarySort
{
    //自己定义的key类应该实现WritableComparable接口
    public static class IntPair implements WritableComparable
    {
        int first;
        int second;
        /**
         * Set the left and right values.
         */
        public void set(int left, int right)
        {
            first = left;
            second = right;
        }
        public int getFirst()
        {
            return first;
        }
        public int getSecond()
        {
            return second;
        }
        @Override
        //反序列化,从流中的二进制转换成IntPair
        public void readFields(DataInput in) throws IOException
        {
            // TODO Auto-generated method stub
            first = in.readInt();
            second = in.readInt();
        }
        @Override
        //序列化,将IntPair转化成使用流传送的二进制
        public void write(DataOutput out) throws IOException
        {
            // TODO Auto-generated method stub
            out.writeInt(first);
            out.writeInt(second);
        }
        @Override
        //key的比较
        public int compareTo(IntPair o)
        {
            // TODO Auto-generated method stub
            if (first != o.first)
            {
                return first < o.first ? -1 : 1;
            }
            else if (second != o.second)
            {
                return second < o.second ? -1 : 1;
            }
            else
            {
                return 0;
            }
        }

        //新定义类应该重写的两个方法
        @Override
        //The hashCode() method is used by the HashPartitioner (the default partitioner in MapReduce)
        public int hashCode()
        {
            return first * 157 + second;
        }
        @Override
        public boolean equals(Object right)
        {
            if (right == null)
                return false;
            if (this == right)
                return true;
            if (right instanceof IntPair)
            {
                IntPair r = (IntPair) right;
                return r.first == first && r.second == second;
            }
            else
            {
                return false;
            }
        }
    }
    /**
      * 分区函数类。根据first确定Partition。
      */
    public static class FirstPartitioner extends Partitioner
    {
        @Override
        public int getPartition(IntPair key, IntWritable value,int numPartitions)
        {
            return Math.abs(key.getFirst() * 127) % numPartitions;
        }
    }

    /**
     * 分组函数类。只要first相同就属于同一个组。
     */
    /*//第一种方法,实现接口RawComparator
    public static class GroupingComparator implements RawComparator {
        @Override
        public int compare(IntPair o1, IntPair o2) {
            int l = o1.getFirst();
            int r = o2.getFirst();
            return l == r ? 0 : (l < r ? -1 : 1);
        }
        @Override
        //一个字节一个字节的比,直到找到一个不相同的字节,然后比这个字节的大小作为两个字节流的大小比较结果。
        public int compare(byte[] b1, int s1, int l1, byte[] b2, int s2, int l2){
            // TODO Auto-generated method stub
             return WritableComparator.compareBytes(b1, s1, Integer.SIZE/8,
                     b2, s2, Integer.SIZE/8);
        }
    }*/
    //第二种方法,继承WritableComparator
    public static class GroupingComparator extends WritableComparator
    {
        protected GroupingComparator()
        {
            super(IntPair.class, true);
        }
        @Override
        //Compare two WritableComparables.
        public int compare(WritableComparable w1, WritableComparable w2)
        {
            IntPair ip1 = (IntPair) w1;
            IntPair ip2 = (IntPair) w2;
            int l = ip1.getFirst();
            int r = ip2.getFirst();
            return l == r ? 0 : (l < r ? -1 : 1);
        }
    }


    // 自定义map
    public static class Map extends Mapper
    {
        private final IntPair intkey = new IntPair();
        private final IntWritable intvalue = new IntWritable();
        public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException
        {
            String line = value.toString();
            StringTokenizer tokenizer = new StringTokenizer(line);
            int left = 0;
            int right = 0;
            if (tokenizer.hasMoreTokens())
            {
                left = Integer.parseInt(tokenizer.nextToken());
                if (tokenizer.hasMoreTokens())
                    right = Integer.parseInt(tokenizer.nextToken());
                intkey.set(left, right);
                intvalue.set(right);
                context.write(intkey, intvalue);
            }
        }
    }
    // 自定义reduce
    //
    public static class Reduce extends Reducer
    {
        private final Text left = new Text();
        private static final Text SEPARATOR = new Text("------------------------------------------------");
        
        public void reduce(IntPair key, Iterable values,Context context) throws IOException, InterruptedException
        {
            context.write(SEPARATOR, null);
            left.set(Integer.toString(key.getFirst()));
            for (IntWritable val : values)
            {
                context.write(left, val);
            }
        }
    }
    /**
     * @param args
     */
    public static void main(String[] args) throws IOException, InterruptedException, ClassNotFoundException
    {
        // TODO Auto-generated method stub
        // 读取hadoop配置
        Configuration conf = new Configuration();
        // 实例化一道作业
        Job job = new Job(conf, "secondarysort");
        job.setJarByClass(SecondarySort.class);
        // Mapper类型
        job.setMapperClass(Map.class);
        // 不再需要Combiner类型,因为Combiner的输出类型对Reduce的输入类型不适用
        //job.setCombinerClass(Reduce.class);
        // Reducer类型
        job.setReducerClass(Reduce.class);
        // 分区函数
        job.setPartitionerClass(FirstPartitioner.class);
        // 分组函数
        job.setGroupingComparatorClass(GroupingComparator.class);

        // map 输出Key的类型
        job.setMapOutputKeyClass(IntPair.class);
        // map输出Value的类型
        job.setMapOutputValueClass(IntWritable.class);
        // rduce输出Key的类型,是Text,因为使用的OutputFormatClass是TextOutputFormat
        job.setOutputKeyClass(Text.class);
        // rduce输出Value的类型
        job.setOutputValueClass(IntWritable.class);

        // 将输入的数据集分割成小数据块splites,同时提供一个RecordReder的实现。
        job.setInputFormatClass(TextInputFormat.class);
        // 提供一个RecordWriter的实现,负责数据输出。
        job.setOutputFormatClass(TextOutputFormat.class);

        // 输入hdfs路径
        FileInputFormat.setInputPaths(job, new Path(args[0]));
        // 输出hdfs路径
        FileOutputFormat.setOutputPath(job, new Path(args[1]));
        // 提交job
        System.exit(job.waitForCompletion(true) ? 0 : 1);
    }
}

 

你可能感兴趣的:(Hadoop)