传送门:点击打开链接
Max Sum Plus Plus
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 30715 Accepted Submission(s): 10845
Problem Description
Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To be a brave ACMer, we always challenge ourselves to more difficult problems. Now you are faced with a more difficult problem.
Given a consecutive number sequence S
1, S
2, S
3, S
4 ... S
x, ... S
n (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ S
x ≤ 32767). We define a function sum(i, j) = S
i + ... + S
j (1 ≤ i ≤ j ≤ n).
Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i
1, j
1) + sum(i
2, j
2) + sum(i
3, j
3) + ... + sum(i
m, j
m) maximal (i
x ≤ i
y ≤ j
x or i
x ≤ j
y ≤ j
x is not allowed).
But I`m lazy, I don't want to write a special-judge module, so you don't have to output m pairs of i and j, just output the maximal summation of sum(i
x, j
x)(1 ≤ x ≤ m) instead. ^_^
Input
Each test case will begin with two integers m and n, followed by n integers S
1, S
2, S
3 ... S
n.
Process to the end of file.
Output
Output the maximal summation described above in one line.
Sample Input
1 3 1 2 3 2 6 -1 4 -2 3 -2 3
Sample Output
6 8
Hint
Huge input, scanf and dynamic programming is recommended.
裸的最大m子段和问题,题目最后提示cin,cout可能会超时,还好889ms,差了好几个15ms。
如果有对最大m子段和不了解的可以戳这里:点击打开链接 点击打开链接
最大m子段和,巧妙地将二维dp优化为一维,避免数组太大开不出来的问题。此题为模板题,具体解释在代码中,准备拿最大环形m子段和是谁手,下篇博客见。
代码实现:
#include
#include
#include
#include
#include
#include
#define ll long long
#define mset(a,x) memset(a,x,sizeof(a))
using namespace std;
const double PI=acos(-1);
const int inf=0x3f3f3f3f;
const double esp=1e-6;
const int maxn=1e6+5;
const int mod=1e9+7;
int dp[maxn],map[maxn],mmax[maxn];
//dp[i]代表当前选取i个数中,从1到i的和是多少,mmax储存前一行的数值
int main()
{
int n,m,i,j,k;
while(cin>>m>>n)
{
for(i=1;i<=n;i++)
cin>>map[i];
mset(dp,0);
mset(mmax,0);
int maxx;
for(i=1;i<=m;i++) //枚举m次选择
{
maxx=-inf; //初始为最小
for(j=i;j<=n;j++) //枚举每一次选择
{
dp[j]=max(dp[j-1]+map[j],mmax[j-1]+map[j]); //当前值取前j-1个数的和跟前一行的和的最大值
mmax[j-1]=maxx; //储存前一行
maxx=max(dp[j],maxx); //储存最大值
}
}
cout<