给定两个单词(beginWord 和 endWord)和一个字典 wordList,找出所有从 beginWord 到 endWord 的最短转换序列。转换需遵循如下规则:
每次转换只能改变一个字母。
转换过程中的中间单词必须是字典中的单词。
说明:
如果不存在这样的转换序列,返回一个空列表。
所有单词具有相同的长度。
所有单词只由小写字母组成。
字典中不存在重复的单词。
你可以假设 beginWord 和 endWord 是非空的,且二者不相同。
示例 1:
输入:
beginWord = "hit",
endWord = "cog",
wordList = ["hot","dot","dog","lot","log","cog"]
输出:
[
["hit","hot","dot","dog","cog"],
["hit","hot","lot","log","cog"]
]
示例 2:
输入:
beginWord = "hit"
endWord = "cog"
wordList = ["hot","dot","dog","lot","log"]
输出: []
解释: endWord "cog" 不在字典中,所以不存在符合要求的转换序列。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/word-ladder-ii
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
这道题的关键是,看出问题的本质,求无向图中两个点的最短路径,将能够转化的两个单词连线,构成一个无向图。
当初直接进行的回溯,超时。
下面构造图进行dfs: 超时 19/39
class Solution {
private:
vector<vector<string>> res;
unordered_map<string, vector<string>> edge;
public:
vector<vector<string>> findLadders(string beginWord, string endWord, vector<string>& wordList) {
vector<string> cur;
unordered_map<string, int> visit;
cur.push_back(beginWord);
for(int i = 0; i < wordList.size(); ++i){
for(int j = i + 1; j < wordList.size(); ++j){
if(diffNum(wordList[i], wordList[j])){
edge[wordList[i]].push_back(wordList[j]);
edge[wordList[j]].push_back(wordList[i]);
}
}
}
if(edge.count(beginWord) == 0){//特别注意:起始点有可能在单词表内
for(int i = 0; i < wordList.size(); ++i){
if(diffNum(wordList[i], beginWord)){
edge[wordList[i]].push_back(beginWord);
edge[beginWord].push_back(wordList[i]);
}
}
}
dfs(cur, wordList, visit, beginWord, endWord);
return res;
}
void dfs(vector<string> cur, vector<string>& wordList, unordered_map<string, int> visit, string curW, string endW){
if(curW == endW){
// for(auto c : cur)
// cout << c << " " ;
// cout << endl;
if(res.empty() || cur.size() < res[0].size()){
res.clear();
res.push_back(cur);
}
else if(!res.empty() && res[0].size() == cur.size())
res.push_back(cur);
return;
}
visit[curW] = 1;
for(int i = 0; i < edge[curW].size(); ++i){
if(visit[edge[curW][i]] == 0){
//visit[edge[curW][i]] = 1;
cur.push_back(edge[curW][i]);
dfs(cur, wordList, visit, edge[curW][i], endW);
//visit[edge[curW][i]] = 0;
cur.pop_back();
}
}
visit[curW] = 0;
}
bool diffNum(string& word1, string& word2){
int res = 0;
for(int i = 0; i < word1.size() && res < 2; ++i){
if(word1[i] != word2[i]){
++res;
}
}
return res == 1;
}
};
bfs求两点间最短路径
这里维护一个数组,用来统计从源节点到该节点的路径长度,因为最后可能有多条最短路径。
队列中保存的是从源节点到当前节点的路径
class Solution {
private:
vector<vector<string>> res;
unordered_map<string, vector<string>> edge;
unordered_map<string,int> dis;
public:
vector<vector<string>> findLadders(string beginWord, string endWord, vector<string>& wordList) {
for(int i = 0; i < wordList.size(); ++i){
for(int j = i + 1; j < wordList.size(); ++j){
if(diffNum(wordList[i], wordList[j])){
edge[wordList[i]].push_back(wordList[j]);
edge[wordList[j]].push_back(wordList[i]);
}
}
dis[wordList[i]] = 0x3f3f3f3f;
}
if(edge.count(beginWord) == 0){//特别注意:起始点有可能在单词表内
for(int i = 0; i < wordList.size(); ++i){
if(diffNum(wordList[i], beginWord)){
edge[wordList[i]].push_back(beginWord);
edge[beginWord].push_back(wordList[i]);
}
}
}
bfs(beginWord, endWord);
return res;
}
void bfs(string curW, string endW){
queue<vector<string>> q;
q.push({curW});
dis[curW] = 0;
while(!q.empty()){
int n = q.size();
while(n--){
auto temp = q.front();
q.pop();
string backs = temp.back();
if(backs == endW){
res.push_back(temp);
continue;
}
for(int i = 0; i < edge[backs].size(); ++i){
if(dis[backs] + 1 <= dis[edge[backs][i]]){//特别注意这里
dis[edge[backs][i]] = dis[backs] + 1;
auto copy(temp);
copy.push_back(edge[backs][i]);
q.push(copy);
}
}
}
if(res.size())
break;
}
}
bool diffNum(string& word1, string& word2){
int res = 0;
for(int i = 0; i < word1.size() && res < 2; ++i){
if(word1[i] != word2[i]){
++res;
}
}
return res == 1;
}
};