Python实现时间序列分析马尔可夫切换自回归模型(MarkovAutoregression算法)项目实战
胖哥真不错
机器学习pythonpython机器学习时间序列分析马尔可夫切换自回归模型项目实战
说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。1.项目背景时间序列分析中的马尔可夫切换自回归模型(MarkovSwitchingAutoregressionModel,简称MSAR或MarkovAutoregression算法)是一种混合了自回归模型(AutoregressiveModel,AR)和马尔可夫链(MarkovC
Python实现时间序列分析马尔可夫切换动态回归模型(MarkovRegression算法)项目实战
胖哥真不错
机器学习pythonpython机器学习时间序列分析马尔可夫切换动态回归模型项目实战
说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。1.项目背景时间序列分析中的马尔可夫切换动态回归模型(MarkovSwitchingDynamicRegressionModel,MSDRM或简称为MarkovRegression算法)是一种用于处理具有非平稳性和隐藏状态依赖性的时序数据的方法。在该模型中,数据生成过程被认为是在
Python实现时间序列分析季节性自回归综合移动平均外生回归模型(SARIMAX算法)项目实战
胖哥真不错
机器学习pythonpython时间序列分析季节性自回归综合移动平均外生回归模型SARIMAX项目实战
说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。1.项目背景时间序列分析中的季节性自回归综合移动平均外生回归模型(SeasonalAutoregressiveIntegratedMovingAveragewitheXogenousregressors,SARIMAX)是一种统计建模技术,用于分析和预测具有季节性、趋势以及可能受
Python实现时间序列分析AR定阶自回归模型(ar_select_order算法)项目实战
胖哥真不错
机器学习pythonpython机器学习时间序列分析AR定阶自回归模型ar_select_order项目实战
说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。1.项目背景时间序列分析中,AR定阶自回归模型(ARorderselection)是指确定自回归模型(AutoRegressiveModel,AR模型)的阶数p的过程。在AR(p)模型中,当前的时间序列值被表示为过去p个时期的线性组合加上一个误差项。ar_select_order
python机器学习实战|机器学习入门笔记3-Pandas基础知识
小赵同学871
机器学习实战入门笔记python机器学习pandas
文章目录1.Pandas介绍2.案例知识点2.1创建DataFrame2.2创建日期3.DataFrame介绍3.1DataFrame属性3.2DataFrame设置索引3.3基本数据操作3.4DataFrame运算1.Pandas介绍开源的数据挖掘库,用于数据探索,封装了matplotlib,numpy2.案例知识点2.1创建DataFramepd.DataFrame(ndarray,index
Python实现离散选择概率模型(Probit算法)项目实战
胖哥真不错
机器学习pythonpython离散选择概率模型Probit算法机器学习项目实战
说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。1.项目背景Probit模型是经过Logit模型的形式经过变形后得到的,Probit模型假设与标准正态分布的概率分布函数相似。本项目通过Probit算法来构建概率模型。2.数据获取本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下:编号变量名称描述1x12x23x34
机器学习实战 K-近邻算法
今昔何夕丶
K-近邻算法优点:精度高、对异常值不敏感、无数据输入假定缺点:计算复杂高、空间复杂度高适用数据范围:数值型和标称型一般流程收集数据:可以使用任何方法准备数据:距离计算所需要的数值,最好是结构化的数据结构分析数据:可以使用任何方法训练算法:此步骤不适用于K-近邻算法测试算法:计算错误率使用算法:首先需要输入样本数据和结构化的输出结果,然后运行K-近邻算法判定输入数据分别属于哪个分类,最后应用对计算出
Python实现稳健线性回归模型(rlm算法)项目实战
胖哥真不错
机器学习pythonpython机器学习稳健线性回归模型rlm算法项目实战
说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。1.项目背景稳健回归可以用在任何使用最小二乘回归的情况下。在拟合最小二乘回归时,我们可能会发现一些异常值或高杠杆数据点。已经确定这些数据点不是数据输入错误,也不是来自另一个群落。所以我们没有令人信服的理由将它们排除在分析之外。稳健回归可能是一种好的策略,它是在将这些点完全从分析中
机器学习实战学习记录(github)
monkeyhlj
学习
机器学习实战学习记录(github)可见我的github:https://github.com/monkeyhlj/machine_learning_bymyself刚刚建好,后面的学习记录会一直在这个仓库里面更新。推荐参考资料:https://www.zhihu.com/column/c_1242508311053963264
【机器学习实战】决策树
吵吵人
算法思路在构造决策树时,第一个需要解决的问题就是,如何确定出哪个特征在划分数据分类是起决定性作用,或者说使用哪个特征分类能实现最好的分类效果。这样,为了找到决定性的特征,划分得到最好的结果,我们就需要评估每个特征。当找到最优特征后,依此特征,数据集就被划分为几个数据子集,这些数据自己会分布在该决策点的所有分支中。此时,如果某个分支下的数据属于同一类型,则该分支下的数据分类已经完成,无需进行下一步的
Python实现基于多元线性回归模型进行统计学相互作用和方差分析(anova算法)项目实战
胖哥真不错
机器学习python线性回归人工智能机器学习python相互作用方差分析anova算法
说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。1.项目背景多元线性回归模型(MultipleLinearRegressionModel)是一种统计学方法,用于研究一个或多个自变量(predictors)与因变量(dependentvariable)之间的关系。在模型中,因变量的值通过一个线性函数来预测,该函数包含了自变量的系
Python实现基于广义线性回归模型进行Meta分析(meta_analysis算法)项目实战
胖哥真不错
机器学习python线性回归python机器学习广义线性回归模型Meta分析meta_analysis算法项目实战
说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。1.项目背景对于广义线性回归模型在Meta分析中的应用概念,可能是将其用于处理非正态分布或非线性关系的数据,例如:1.当原始研究的结果数据不是连续型且服从正态分布,而是二项分布(如成功率)、泊松分布(如发病率)或其他分布时,可以通过GLM设定适当的链接函数和分布族来适应。2.在进
Python实现GEE嵌套协方差结构仿真模型(GEE算法)项目实战
胖哥真不错
机器学习pythonpython机器学习GEE嵌套协方差结构仿真模型GEE算法项目实战
说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。1.项目背景广义估计方程(GeneralizedEstimatingEquations,GEE)是一种用于分析具有重复测量或者集群数据的统计方法。在社会学、医学、生物学等多个领域,研究对象的数据往往存在嵌套或群聚结构,即个体的数据不是独立的,而是隶属于某个群体或层级结构中。GEE
Python实现M-Estimators稳健线性回归模型(RLM算法)项目实战
胖哥真不错
机器学习pythonpython机器学习M-Estimators稳健线性回归模型RLM算法
说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。1.项目背景M-Estimators是稳健统计估计中的一个重要概念,它们在处理含有异常值、离群点或者影响点的数据时特别有用。在稳健线性回归(RobustLinearRegression,RLM)模型中,M-Estimators用于替代普通最小二乘法(OLS),以减少这些极端观测值
机器学习——python训练RNN模型实战(傻瓜式教学,小学生都可以学会)代码开源
苏苏不是叔
机器学习pythonrnn
机器学习实战目录第一章python训练线性模型实战第二章python训练决策树模型实战第三章python训练神经网络模型实战第四章python训练支持向量机模型实战第五章python训练贝叶斯分类器模型实战第六章python训练集成学习模型实战第七章python训练聚类模型实战第八章python训练KNN模型实战第九章python训练CNN模型实战第十章python训练RNN模型实战......(
机器学习——python训练决策树模型实战(傻瓜式教学,小学生都可以学会)
苏苏不是叔
机器学习python决策树
机器学习——python训练决策树模型实战目录机器学习——python训练决策树模型实战机器学习实战目录训练一个决策树模型需要经过以下步骤:1.下载数据集2.数据预处理3.加载数据集4.准备训练数据5.创建模型6.训练模型7.测试模型参考资料机器学习实战目录第一章python训练线性模型实战第二章python训练决策树模型实战第三章python训练神经网络模型实战第四章python训练支持向量机模
Spring4.1新特性——Spring MVC增强
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
mysql 性能查询优化
annan211
javasql优化mysql应用服务器
1 时间到底花在哪了?
mysql在执行查询的时候需要执行一系列的子任务,这些子任务包含了整个查询周期最重要的阶段,这其中包含了大量为了
检索数据列到存储引擎的调用以及调用后的数据处理,包括排序、分组等。在完成这些任务的时候,查询需要在不同的地方
花费时间,包括网络、cpu计算、生成统计信息和执行计划、锁等待等。尤其是向底层存储引擎检索数据的调用操作。这些调用需要在内存操
windows系统配置
cherishLC
windows
删除Hiberfil.sys :使用命令powercfg -h off 关闭休眠功能即可:
http://jingyan.baidu.com/article/f3ad7d0fc0992e09c2345b51.html
类似的还有pagefile.sys
msconfig 配置启动项
shutdown 定时关机
ipconfig 查看网络配置
ipconfig /flushdns
人体的排毒时间
Array_06
工作
========================
|| 人体的排毒时间是什么时候?||
========================
转载于:
http://zhidao.baidu.com/link?url=ibaGlicVslAQhVdWWVevU4TMjhiKaNBWCpZ1NS6igCQ78EkNJZFsEjCjl3T5EdXU9SaPg04bh8MbY1bR
ZooKeeper
cugfy
zookeeper
Zookeeper是一个高性能,分布式的,开源分布式应用协调服务。它提供了简单原始的功能,分布式应用可以基于它实现更高级的服务,比如同步, 配置管理,集群管理,名空间。它被设计为易于编程,使用文件系统目录树作为数据模型。服务端跑在java上,提供java和C的客户端API。 Zookeeper是Google的Chubby一个开源的实现,是高有效和可靠的协同工作系统,Zookeeper能够用来lea
网络爬虫的乱码处理
随意而生
爬虫网络
下边简单总结下关于网络爬虫的乱码处理。注意,这里不仅是中文乱码,还包括一些如日文、韩文 、俄文、藏文之类的乱码处理,因为他们的解决方式 是一致的,故在此统一说明。 网络爬虫,有两种选择,一是选择nutch、hetriex,二是自写爬虫,两者在处理乱码时,原理是一致的,但前者处理乱码时,要看懂源码后进行修改才可以,所以要废劲一些;而后者更自由方便,可以在编码处理
Xcode常用快捷键
张亚雄
xcode
一、总结的常用命令:
隐藏xcode command+h
退出xcode command+q
关闭窗口 command+w
关闭所有窗口 command+option+w
关闭当前
mongoDB索引操作
adminjun
mongodb索引
一、索引基础: MongoDB的索引几乎与传统的关系型数据库一模一样,这其中也包括一些基本的优化技巧。下面是创建索引的命令: > db.test.ensureIndex({"username":1}) 可以通过下面的名称查看索引是否已经成功建立: &nbs
成都软件园实习那些话
aijuans
成都 软件园 实习
无聊之中,翻了一下日志,发现上一篇经历是很久以前的事了,悔过~~
断断续续离开了学校快一年了,习惯了那里一天天的幼稚、成长的环境,到这里有点与世隔绝的感觉。不过还好,那是刚到这里时的想法,现在感觉在这挺好,不管怎么样,最要感谢的还是老师能给这么好的一次催化成长的机会,在这里确实看到了好多好多能想到或想不到的东西。
都说在外面和学校相比最明显的差距就是与人相处比较困难,因为在外面每个人都
Linux下FTP服务器安装及配置
ayaoxinchao
linuxFTP服务器vsftp
检测是否安装了FTP
[root@localhost ~]# rpm -q vsftpd
如果未安装:package vsftpd is not installed 安装了则显示:vsftpd-2.0.5-28.el5累死的版本信息
安装FTP
运行yum install vsftpd命令,如[root@localhost ~]# yum install vsf
使用mongo-java-driver获取文档id和查找文档
BigBird2012
driver
注:本文所有代码都使用的mongo-java-driver实现。
在MongoDB中,一个集合(collection)在概念上就类似我们SQL数据库中的表(Table),这个集合包含了一系列文档(document)。一个DBObject对象表示我们想添加到集合(collection)中的一个文档(document),MongoDB会自动为我们创建的每个文档添加一个id,这个id在
JSONObject以及json串
bijian1013
jsonJSONObject
一.JAR包简介
要使程序可以运行必须引入JSON-lib包,JSON-lib包同时依赖于以下的JAR包:
1.commons-lang-2.0.jar
2.commons-beanutils-1.7.0.jar
3.commons-collections-3.1.jar
&n
[Zookeeper学习笔记之三]Zookeeper实例创建和会话建立的异步特性
bit1129
zookeeper
为了说明问题,看个简单的代码,
import org.apache.zookeeper.*;
import java.io.IOException;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ThreadLocal
【Scala十二】Scala核心六:Trait
bit1129
scala
Traits are a fundamental unit of code reuse in Scala. A trait encapsulates method and field definitions, which can then be reused by mixing them into classes. Unlike class inheritance, in which each c
weblogic version 10.3破解
ronin47
weblogic
版本:WebLogic Server 10.3
说明:%DOMAIN_HOME%:指WebLogic Server 域(Domain)目录
例如我的做测试的域的根目录 DOMAIN_HOME=D:/Weblogic/Middleware/user_projects/domains/base_domain
1.为了保证操作安全,备份%DOMAIN_HOME%/security/Defa
求第n个斐波那契数
BrokenDreams
今天看到群友发的一个问题:写一个小程序打印第n个斐波那契数。
自己试了下,搞了好久。。。基础要加强了。
&nbs
读《研磨设计模式》-代码笔记-访问者模式-Visitor
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
interface IVisitor {
//第二次分派,Visitor调用Element
void visitConcret
MatConvNet的excise 3改为网络配置文件形式
cherishLC
matlab
MatConvNet为vlFeat作者写的matlab下的卷积神经网络工具包,可以使用GPU。
主页:
http://www.vlfeat.org/matconvnet/
教程:
http://www.robots.ox.ac.uk/~vgg/practicals/cnn/index.html
注意:需要下载新版的MatConvNet替换掉教程中工具包中的matconvnet:
http
ZK Timeout再讨论
chenchao051
zookeepertimeouthbase
http://crazyjvm.iteye.com/blog/1693757 文中提到相关超时问题,但是又出现了一个问题,我把min和max都设置成了180000,但是仍然出现了以下的异常信息:
Client session timed out, have not heard from server in 154339ms for sessionid 0x13a3f7732340003
CASE WHEN 用法介绍
daizj
sqlgroup bycase when
CASE WHEN 用法介绍
1. CASE WHEN 表达式有两种形式
--简单Case函数
CASE sex
WHEN '1' THEN '男'
WHEN '2' THEN '女'
ELSE '其他' END
--Case搜索函数
CASE
WHEN sex = '1' THEN
PHP技巧汇总:提高PHP性能的53个技巧
dcj3sjt126com
PHP
PHP技巧汇总:提高PHP性能的53个技巧 用单引号代替双引号来包含字符串,这样做会更快一些。因为PHP会在双引号包围的字符串中搜寻变量, 单引号则不会,注意:只有echo能这么做,它是一种可以把多个字符串当作参数的函数译注: PHP手册中说echo是语言结构,不是真正的函数,故把函数加上了双引号)。 1、如果能将类的方法定义成static,就尽量定义成static,它的速度会提升将近4倍
Yii框架中CGridView的使用方法以及详细示例
dcj3sjt126com
yii
CGridView显示一个数据项的列表中的一个表。
表中的每一行代表一个数据项的数据,和一个列通常代表一个属性的物品(一些列可能对应于复杂的表达式的属性或静态文本)。 CGridView既支持排序和分页的数据项。排序和分页可以在AJAX模式或正常的页面请求。使用CGridView的一个好处是,当用户浏览器禁用JavaScript,排序和分页自动退化普通页面请求和仍然正常运行。
实例代码如下:
Maven项目打包成可执行Jar文件
dyy_gusi
assembly
Maven项目打包成可执行Jar文件
在使用Maven完成项目以后,如果是需要打包成可执行的Jar文件,我们通过eclipse的导出很麻烦,还得指定入口文件的位置,还得说明依赖的jar包,既然都使用Maven了,很重要的一个目的就是让这些繁琐的操作简单。我们可以通过插件完成这项工作,使用assembly插件。具体使用方式如下:
1、在项目中加入插件的依赖:
<plugin>
php常见错误
geeksun
PHP
1. kevent() reported that connect() failed (61: Connection refused) while connecting to upstream, client: 127.0.0.1, server: localhost, request: "GET / HTTP/1.1", upstream: "fastc
修改linux的用户名
hongtoushizi
linuxchange password
Change Linux Username
更改Linux用户名,需要修改4个系统的文件:
/etc/passwd
/etc/shadow
/etc/group
/etc/gshadow
古老/传统的方法是使用vi去直接修改,但是这有安全隐患(具体可自己搜一下),所以后来改成使用这些命令去代替:
vipw
vipw -s
vigr
vigr -s
具体的操作顺
第五章 常用Lua开发库1-redis、mysql、http客户端
jinnianshilongnian
nginxlua
对于开发来说需要有好的生态开发库来辅助我们快速开发,而Lua中也有大多数我们需要的第三方开发库如Redis、Memcached、Mysql、Http客户端、JSON、模板引擎等。
一些常见的Lua库可以在github上搜索,https://github.com/search?utf8=%E2%9C%93&q=lua+resty。
Redis客户端
lua-resty-r
zkClient 监控机制实现
liyonghui160com
zkClient 监控机制实现
直接使用zk的api实现业务功能比较繁琐。因为要处理session loss,session expire等异常,在发生这些异常后进行重连。又因为ZK的watcher是一次性的,如果要基于wather实现发布/订阅模式,还要自己包装一下,将一次性订阅包装成持久订阅。另外如果要使用抽象级别更高的功能,比如分布式锁,leader选举
在Mysql 众多表中查找一个表名或者字段名的 SQL 语句
pda158
mysql
在Mysql 众多表中查找一个表名或者字段名的 SQL 语句:
方法一:SELECT table_name, column_name from information_schema.columns WHERE column_name LIKE 'Name';
方法二:SELECT column_name from information_schema.colum
程序员对英语的依赖
Smile.zeng
英语程序猿
1、程序员最基本的技能,至少要能写得出代码,当我们还在为建立类的时候思考用什么单词发牢骚的时候,英语与别人的差距就直接表现出来咯。
2、程序员最起码能认识开发工具里的英语单词,不然怎么知道使用这些开发工具。
3、进阶一点,就是能读懂别人的代码,有利于我们学习人家的思路和技术。
4、写的程序至少能有一定的可读性,至少要人别人能懂吧...
以上一些问题,充分说明了英语对程序猿的重要性。骚年
Oracle学习笔记(8) 使用PLSQL编写触发器
vipbooks
oraclesql编程活动Access
时间过得真快啊,转眼就到了Oracle学习笔记的最后个章节了,通过前面七章的学习大家应该对Oracle编程有了一定了了解了吧,这东东如果一段时间不用很快就会忘记了,所以我会把自己学习过的东西做好详细的笔记,用到的时候可以随时查找,马上上手!希望这些笔记能对大家有些帮助!
这是第八章的学习笔记,学习完第七章的子程序和包之后