最近在做一个这样一个需求,一个控件可以实时预览摄像头的内容,并且对此图像进行高斯模糊处理,现在来记录一下。
1,摄像头实时预览的数据会回调给onPreviewFrame(byte[] data, Camera camera) ,通过这个获取YUV格式的数据。
2,将YUV转换成RGB数组。
3,cpu计算rgb数组或者gpu来处理图像。(这里用的cpu计算)
github上有一个GPU实现高斯滤镜的开源项目,但是我觉得它的高斯模糊实现的不够好。
android-gpuimage
在onPreviewFrame文档中有这么一段话。
/**
* Callback interface used to deliver copies of preview frames as
* they are displayed.
*
* @see #setPreviewCallback(Camera.PreviewCallback)
* @see #setOneShotPreviewCallback(Camera.PreviewCallback)
* @see #setPreviewCallbackWithBuffer(Camera.PreviewCallback)
* @see #startPreview()
*/
public interface PreviewCallback
{
/**
* Called as preview frames are displayed. This callback is invoked
* on the event thread {@link #open(int)} was called from.
*
* If using the {@link android.graphics.ImageFormat#YV12} format,
* refer to the equations in {@link Camera.Parameters#setPreviewFormat}
* for the arrangement of the pixel data in the preview callback
* buffers.
*
* @param data the contents of the preview frame in the format defined
* by {@link android.graphics.ImageFormat}, which can be queried
* with {@link android.hardware.Camera.Parameters#getPreviewFormat()}.
* If {@link android.hardware.Camera.Parameters#setPreviewFormat(int)}
* is never called, the default will be the YCbCr_420_SP
* (NV21) format.
* @param camera the Camera service object.
*/
void onPreviewFrame(byte[] data, Camera camera);
};
默认输出的格式YUV420SP,注释中的YCbCr就是YUV。
YUV,分为三个分量,“Y”表示明亮度(Luminance或Luma),也就是灰度值;
而“U”和“V” 表示的则是色度(Chrominance或Chroma),作用是描述影像色彩及饱和度,用于指定像素的颜色。
下面是拥有8个像素的YUV数组[4*2],YUV420SP即4个Y对应一个UV,如图,Y1,Y2,Y9,Y10对应U1,V1。
最主要是下面的转换公式:
//ITU-R BT.601 conversion
R = 1.164*(Y-16)+1.596*(Cr-128)
G = 1.164*(Y-16)-0.392*(Cb-128)-0.813*(Cr-128)
B = 1.164*(Y-16)+2.017*(Cb-128)
或者
R'' = Y + 1.140*V
G'' = Y - 0.394*U - 0.581*V
B'' = Y + 2.032*U
只是工业标准不同而已。下面截取android-gpu-image上面的代码并添加一些注释,网上有很多转换的方法,但是这个方法性能非常ok,耗时在10-20ms。为了最大可能获取性能,代码中乘法等都变成了位操作和加法的方式。
void YUVtoARBG(JNIEnv * env, jobject obj, jbyteArray yuv420sp, jint width, jint height, jintArray rgbOut)
{
int sz;
int i;
int j;
int Y;
int Cr = 0;
int Cb = 0;
int pixPtr = 0; //Y所占的空间
int jDiv2 = 0; //uv前面行所占的空间
int R = 0;
int G = 0;
int B = 0;
int cOff;
int w = width;
int h = height;
sz = w * h;
jint *rgbData = (jint*) ((*env)->GetPrimitiveArrayCritical(env, rgbOut, 0));
jbyte* yuv = (jbyte*) (*env)->GetPrimitiveArrayCritical(env, yuv420sp, 0);
for(j = 0; j < h; j++) {
pixPtr = j * w; //Y所占的空间
jDiv2 = j >> 1; //除以2向下取整
for(i = 0; i < w; i++) {
Y = yuv[pixPtr];
if(Y < 0) Y += 255;
//用位运算判断是奇数还是偶数
if((i & 0x1) != 1) {
cOff = sz + jDiv2 * w + (i >> 1) * 2; //计算 UV的位置 (i>>1)*2就是为了变成偶数 向下取整 因为U的游标都是偶数位
Cb = yuv[cOff];
if(Cb < 0) Cb += 127; else Cb -= 128;
Cr = yuv[cOff + 1];
if(Cr < 0) Cr += 127; else Cr -= 128;
}
//ITU-R BT.601 conversion
//
// R = 1.164*(Y-16)+1.596*(Cr-128)
// G = 1.164*(Y-16)-0.392*(Cb-128)-0.813*(Cr-128)
// B = 1.164*(Y-16)+2.017*(Cb-128)
//
Y = Y + (Y >> 3) + (Y >> 5) + (Y >> 7); //Y=Y+Y*0.125+0.03125+0.00078
R = Y + Cb + (Cb >> 1) + (Cb >> 4) + (Cb >> 5);
if(R < 0) R = 0; else if(R > 255) R = 255;
G = Y - Cb + (Cb >> 3) + (Cb >> 4) - (Cr >> 1) + (Cr >> 3);
if(G < 0) G = 0; else if(G > 255) G = 255;
B = Y + (Cr << 1) + (Cr >> 6);
if(B < 0) B = 0; else if(B > 255) B = 255;
rgbData[pixPtr++] = 0xff000000 + (R << 16) + (G << 8) + B;
}
}
(*env)->ReleasePrimitiveArrayCritical(env, rgbOut, rgbData, 0);
(*env)->ReleasePrimitiveArrayCritical(env, yuv420sp, yuv, 0);
}
至于原理请看:高斯模糊
这里用的FastBlur,之前考虑了RenderScript ,后来发现在实际使用中,最下方会出现闪烁的现象,故放弃。
public static Bitmap doBlur(Bitmap sentBitmap, int radius, boolean canReuseInBitmap) {
// Stack Blur v1.0 from
// http://www.quasimondo.com/StackBlurForCanvas/StackBlurDemo.html
//
// Java Author: Mario Klingemann
// http://incubator.quasimondo.com
// created Feburary 29, 2004
// Android port : Yahel Bouaziz
// http://www.kayenko.com
// ported april 5th, 2012
// This is a compromise between Gaussian Blur and Box blur
// It creates much better looking blurs than Box Blur, but is
// 7x faster than my Gaussian Blur implementation.
//
// I called it Stack Blur because this describes best how this
// filter works internally: it creates a kind of moving stack
// of colors whilst scanning through the image. Thereby it
// just has to add one new block of color to the right side
// of the stack and remove the leftmost color. The remaining
// colors on the topmost layer of the stack are either added on
// or reduced by one, depending on if they are on the right or
// on the left side of the stack.
//
// If you are using this algorithm in your code please add
// the following line:
//
// Stack Blur Algorithm by Mario Klingemann
Bitmap bitmap;
if (canReuseInBitmap) {
bitmap = sentBitmap;
} else {
bitmap = sentBitmap.copy(sentBitmap.getConfig(), true);
}
if (radius < 1) {
return (null);
}
int w = bitmap.getWidth();
int h = bitmap.getHeight();
int[] pix = new int[w * h];
bitmap.getPixels(pix, 0, w, 0, 0, w, h);
int wm = w - 1;
int hm = h - 1;
int wh = w * h;
int div = radius + radius + 1;
int r[] = new int[wh];
int g[] = new int[wh];
int b[] = new int[wh];
int rsum, gsum, bsum, x, y, i, p, yp, yi, yw;
int vmin[] = new int[Math.max(w, h)];
int divsum = (div + 1) >> 1;
divsum *= divsum;
int dv[] = new int[256 * divsum];
for (i = 0; i < 256 * divsum; i++) {
dv[i] = (i / divsum);
}
yw = yi = 0;
int[][] stack = new int[div][3];
int stackpointer;
int stackstart;
int[] sir;
int rbs;
int r1 = radius + 1;
int routsum, goutsum, boutsum;
int rinsum, ginsum, binsum;
for (y = 0; y < h; y++) {
rinsum = ginsum = binsum = routsum = goutsum = boutsum = rsum = gsum = bsum = 0;
for (i = -radius; i <= radius; i++) {
p = pix[yi + Math.min(wm, Math.max(i, 0))];
sir = stack[i + radius];
sir[0] = (p & 0xff0000) >> 16;
sir[1] = (p & 0x00ff00) >> 8;
sir[2] = (p & 0x0000ff);
rbs = r1 - Math.abs(i);
rsum += sir[0] * rbs;
gsum += sir[1] * rbs;
bsum += sir[2] * rbs;
if (i > 0) {
rinsum += sir[0];
ginsum += sir[1];
binsum += sir[2];
} else {
routsum += sir[0];
goutsum += sir[1];
boutsum += sir[2];
}
}
stackpointer = radius;
for (x = 0; x < w; x++) {
r[yi] = dv[rsum];
g[yi] = dv[gsum];
b[yi] = dv[bsum];
rsum -= routsum;
gsum -= goutsum;
bsum -= boutsum;
stackstart = stackpointer - radius + div;
sir = stack[stackstart % div];
routsum -= sir[0];
goutsum -= sir[1];
boutsum -= sir[2];
if (y == 0) {
vmin[x] = Math.min(x + radius + 1, wm);
}
p = pix[yw + vmin[x]];
sir[0] = (p & 0xff0000) >> 16;
sir[1] = (p & 0x00ff00) >> 8;
sir[2] = (p & 0x0000ff);
rinsum += sir[0];
ginsum += sir[1];
binsum += sir[2];
rsum += rinsum;
gsum += ginsum;
bsum += binsum;
stackpointer = (stackpointer + 1) % div;
sir = stack[(stackpointer) % div];
routsum += sir[0];
goutsum += sir[1];
boutsum += sir[2];
rinsum -= sir[0];
ginsum -= sir[1];
binsum -= sir[2];
yi++;
}
yw += w;
}
for (x = 0; x < w; x++) {
rinsum = ginsum = binsum = routsum = goutsum = boutsum = rsum = gsum = bsum = 0;
yp = -radius * w;
for (i = -radius; i <= radius; i++) {
yi = Math.max(0, yp) + x;
sir = stack[i + radius];
sir[0] = r[yi];
sir[1] = g[yi];
sir[2] = b[yi];
rbs = r1 - Math.abs(i);
rsum += r[yi] * rbs;
gsum += g[yi] * rbs;
bsum += b[yi] * rbs;
if (i > 0) {
rinsum += sir[0];
ginsum += sir[1];
binsum += sir[2];
} else {
routsum += sir[0];
goutsum += sir[1];
boutsum += sir[2];
}
if (i < hm) {
yp += w;
}
}
yi = x;
stackpointer = radius;
for (y = 0; y < h; y++) {
// Preserve alpha channel: ( 0xff000000 & pix[yi] )
pix[yi] = (0xff000000 & pix[yi]) | (dv[rsum] << 16) | (dv[gsum] << 8) | dv[bsum];
rsum -= routsum;
gsum -= goutsum;
bsum -= boutsum;
stackstart = stackpointer - radius + div;
sir = stack[stackstart % div];
routsum -= sir[0];
goutsum -= sir[1];
boutsum -= sir[2];
if (x == 0) {
vmin[y] = Math.min(y + r1, hm) * w;
}
p = x + vmin[y];
sir[0] = r[p];
sir[1] = g[p];
sir[2] = b[p];
rinsum += sir[0];
ginsum += sir[1];
binsum += sir[2];
rsum += rinsum;
gsum += ginsum;
bsum += binsum;
stackpointer = (stackpointer + 1) % div;
sir = stack[stackpointer];
routsum += sir[0];
goutsum += sir[1];
boutsum += sir[2];
rinsum -= sir[0];
ginsum -= sir[1];
binsum -= sir[2];
yi += w;
}
}
bitmap.setPixels(pix, 0, w, 0, 0, w, h);
return (bitmap);
}
为了获取进一步的性能,我们可以做以下操作:
1,设置一个vector,当vector中存在对象时,丢弃当前帧,绘制完后,清空vector,保证vector最多只有一个对象。
2,先对图片进行缩小处理,高斯模糊后再放大。
//每次只处理一个图像,若前面的图像未处理完成,舍弃当前图像,提升性能
if(mVector.isEmpty()){
Log.i(TAG, "byte data ADD");
mVector.add(data);
new DrawTask().execute();
}
因为onPreviewFrame()在主线程中,所以绘图一定要异步进行。
这里一个例子,提供大家参考:下载地址