C++11 实现 Twitter Snowflake

SnowflakeIdWorker c++11

Twitter Snowflake c++11实现版本

代码位置

SnowFlake 算法生成的 id 是一个64位大小的整数, 它的结构如下图:

- 1位: 不用, 二进制中最高位为1的都是负数, 但是我们生成的id一般都使用整数, 所以这个最高位固定是0.

  • 41位: 用来记录时间戳(毫秒级), 注意, 这里存储的不是当前的时间戳,而是存储时间戳的差值(当前时间截 - 开始时间截), 可以表示69年的时间.

  • 10位: 用来记录工作机器id, 可以部署在1024个节点, 包括5位datacenterId和5位workerId.

  • 12位: 序列号,用来记录同毫秒内产生的不同id, 同一机器同一时间截(毫秒)内可以产生4096个序列号, 也就是1毫秒内可以产生4096个id.

Snowflake可以保证
1. 所有生成的id按时间趋势递增.
2. 整个分布式系统内不会产生重复id(因为有datacenterId和workerId来做区分).

twitter的实现版本

代码实现:

#ifndef _JW_CORE_ID_WORKER_H_
#define _JW_CORE_ID_WORKER_H_

#include 
#include 
#include 
#include 
#include 
#include "Noncopyable.h"
#include "Singleton.h"

// 如果不使用 mutex, 则开启下面这个定义, 但是我发现, 还是开启 mutex 功能, 速度比较快
// #define SNOWFLAKE_ID_WORKER_NO_LOCK

namespace Jiawa {

    /**
    * @brief 核心
    * 核心功能
    */
    namespace Core {

        /**
         * @brief 分布式id生成类
         * https://segmentfault.com/a/1190000011282426
         * https://github.com/twitter/snowflake/blob/snowflake-2010/src/main/scala/com/twitter/service/snowflake/IdWorker.scala
         *
         * 64bit id: 0000  0000  0000  0000  0000  0000  0000  0000  0000  0000  0000  0000  0000  0000  0000  0000 
         *           ||                                                           ||     ||     |  |              | 
         *           |└---------------------------时间戳--------------------------┘└中心-┘└机器-┘  └----序列号----┘ 
         *           |
         *         不用
         * SnowFlake的优点: 整体上按照时间自增排序, 并且整个分布式系统内不会产生ID碰撞(由数据中心ID和机器ID作区分), 并且效率较高, 经测试, SnowFlake每秒能够产生26万ID左右.
         */
        class SnowflakeIdWorker : private Noncopyable {

            // 实现单例
            friend class Singleton;

        public:
            typedef unsigned int UInt;
            typedef unsigned long long int UInt64;

#ifdef SNOWFLAKE_ID_WORKER_NO_LOCK
            typedef std::atomic AtomicUInt;
            typedef std::atomic AtomicUInt64;
#else
            typedef UInt AtomicUInt;
            typedef UInt64 AtomicUInt64;
#endif

            void setWorkerId(UInt workerId) {
                this->workerId = workerId;
            }

            void setDatacenterId(UInt datacenterId) {
                this->datacenterId = datacenterId;
            }

            UInt64 getId() {
                return nextId();
            }

            /**
             * 获得下一个ID (该方法是线程安全的)
             *
             * @return SnowflakeId
             */
            UInt64 nextId() {
#ifndef SNOWFLAKE_ID_WORKER_NO_LOCK
                std::unique_lock lock{ mutex };
                AtomicUInt64 timestamp{ 0 };
#else
                static AtomicUInt64 timestamp{ 0 };
#endif
                timestamp = timeGen();

                // 如果当前时间小于上一次ID生成的时间戳,说明系统时钟回退过这个时候应当抛出异常
                if (timestamp < lastTimestamp) {
                    std::ostringstream s;
                    s << "clock moved backwards.  Refusing to generate id for " << lastTimestamp - timestamp << " milliseconds";
                    throw std::exception(std::runtime_error(s.str()));
                }

                if (lastTimestamp == timestamp) {
                    // 如果是同一时间生成的,则进行毫秒内序列
                    sequence = (sequence + 1) & sequenceMask;
                    if (0 == sequence) {
                        // 毫秒内序列溢出, 阻塞到下一个毫秒,获得新的时间戳
                        timestamp = tilNextMillis(lastTimestamp);
                    }
                } else {
                    sequence = 0;
                }

#ifndef SNOWFLAKE_ID_WORKER_NO_LOCK
                lastTimestamp = timestamp;
#else
                lastTimestamp = timestamp.load();
#endif

                // 移位并通过或运算拼到一起组成64位的ID
                return ((timestamp - twepoch) << timestampLeftShift)
                | (datacenterId << datacenterIdShift)
                | (workerId << workerIdShift)
                | sequence;
            }

        protected:
            SnowflakeIdWorker() : workerId(0), datacenterId(0), sequence(0), lastTimestamp(0) { }

            /**
             * 返回以毫秒为单位的当前时间
             *
             * @return 当前时间(毫秒)
             */
            UInt64 timeGen() const {
                auto t = std::chrono::time_point_cast(std::chrono::high_resolution_clock::now());
                return t.time_since_epoch().count();
            }

            /**
             * 阻塞到下一个毫秒,直到获得新的时间戳
             *
             * @param lastTimestamp 上次生成ID的时间截
             * @return 当前时间戳
             */
            UInt64 tilNextMillis(UInt64 lastTimestamp) const {
                UInt64 timestamp = timeGen();
                while (timestamp <= lastTimestamp) {
                    timestamp = timeGen();
                }
                return timestamp;
            }

        private:

#ifndef SNOWFLAKE_ID_WORKER_NO_LOCK
            std::mutex mutex;
#endif

            /**
             * 开始时间截 (2018-01-01 00:00:00.000)
             */
            const UInt64 twepoch = 1514736000000;

            /**
             * 机器id所占的位数
             */
            const UInt workerIdBits = 5;

            /**
             * 数据中心id所占的位数
             */
            const UInt datacenterIdBits = 5;

            /**
             * 序列所占的位数
             */
            const UInt sequenceBits = 12;

            /**
             * 机器ID向左移12位
             */
            const UInt workerIdShift = sequenceBits;

            /**
             * 数据标识id向左移17位
             */
            const UInt datacenterIdShift = workerIdShift + workerIdBits;

            /**
             * 时间截向左移22位
             */
            const UInt timestampLeftShift = datacenterIdShift + datacenterIdBits;

            /**
             * 支持的最大机器id,结果是31
             */
            const UInt maxWorkerId = -1 ^ (-1 << workerIdBits);

            /**
             * 支持的最大数据中心id,结果是31
             */
            const UInt maxDatacenterId = -1 ^ (-1 << datacenterIdBits);

            /**
             * 生成序列的掩码,这里为4095
             */
            const UInt sequenceMask = -1 ^ (-1 << sequenceBits);

            /**
             * 工作机器id(0~31)
             */
            UInt workerId;

            /**
             * 数据中心id(0~31)
             */
            UInt datacenterId;

            /**
             * 毫秒内序列(0~4095)
             */
            AtomicUInt sequence{ 0 };

            /**
             * 上次生成ID的时间截
             */
            AtomicUInt64 lastTimestamp{ 0 };

        };

        typedef SnowflakeIdWorker IdWorker;
    }
}

#endif // _JW_CORE_ID_WORKER_H_

测试代码:

#include 
#include "./Core/Timer.h"
#include "./Core/IdWorker.h"

using namespace Jiawa::Core;

int main(int argc, char **argv) {
    std::cout << "start generate id" << std::endl;

    auto &idWorker = Singleton::instance();
    idWorker.setDatacenterId(12);
    idWorker.setWorkerId(5);

    const size_t count = 20000000;

    Timer<> timer;
    for (size_t i = 0; i < count; i++)
    {
        idWorker.nextId();
    }
    // 我的电脑生成 20000000 id 的耗时为 4.887s
    std::cout << "generate " << count << " id elapsed: " << timer.elapsed() << "ms" << std::endl;
    return 0;
}

你可能感兴趣的:(C++,snowflake,分布式id,C++11,Timer)