基于Quick_Thought Vectors的Sentence2Vec神经网络实现

一、前言
1、Skip-Thought-Vector论文 代码复现 https://github.com/ryankiros/skip-thoughts
2、本文假设读者已了解Skip-Thought-Vector和RNN相关基础
3、quick_thought 论文:Lajanugen Logeswaran, Honglak Lee, An efficient framework for learning sentence representations. In ICLR, 2018.
二、实战
1、对数据进行分句(去掉过短的句子)、删除频率高的句子、分词

def fenju(data):
    sentence=[]
    for i in range(len(data)):
        try:
            m = re.findall('。',data[i][0])
            # print(m)
            if data[i][1] is not None and len(m)>0:
                if len(m)>1:
                    content=data[i][0].split('。')
                    # print(content)
                    for c in range(len(content)):
                        if len(content[c])>10:
                            sentence.append(content[c]+'。')
                elif len(data[i][0])>10:
                    sentence.append(data[i][0])
            else:
                continue
        except:
            continue
    return sentence

def _process_sentence_list(sentence_list, threshold=0.01):
    sentence_count = Counter(sentence_list)
    total_count = len(sentence_list)
    # 计算句子频率
    sentence_freqs = {w: c / total_count for w, c in sentence_count.items()}
    # 剔除出现频率太高的句子
    sentence=[]
    for w in range(len(sentence_list)):
        if sentence_freqs[sentence_list[w]] < threshold:
            sentence.append(sentence_list[w])
        else:
            continue
    return sentence

def fenci(alltext, writefile, filename):
    if not os.path.exists(writefile):
        os.makedirs(writefile)
    sentence = [' '.join(jieba.lcut(''.join(text.split()))) for text in alltext]
    print(sentence)
    with open(os.path.join(writefile, filename), "w") as fw:
        fw.write("\n".join(sentence))

2、构建vocab、TFRecord文件(详细看github代码)
3、模型输入定义(3种模式train/eval/encode)

def build_inputs(self):

    if self.mode == "encode":
      encode_ids = tf.placeholder(tf.int64, (None, None), name="encode_ids")
      encode_mask = tf.placeholder(tf.int8, (None, None), name="encode_mask")
    else:
      # Prefetch serialized tf.Example protos.
      input_queue = input_ops.prefetch_input_data(
          self.reader,
          FLAGS.input_file_pattern,
          shuffle=FLAGS.shuffle_input_data,
          capacity=FLAGS.input_queue_capacity,
          num_reader_threads=FLAGS.num_input_reader_threads)
      print("input_queue",input_queue)
      # Deserialize a batch.
      serialized = input_queue.dequeue_many(FLAGS.batch_size)
      encode = input_ops.parse_example_batch(serialized)
      encode_ids = encode.ids
      encode_mask = encode.mask
    self.encode_ids = encode_ids
    self.encode_mask = encode_mask

由于我们每个batch中句子都进行了padding,为了防止padding对训练的影响,这里需要传递掩码给到RNN网络–每个句子各自的原始长度(encode_mask)。

4、对输入句子进行embedding

def build_word_embeddings(self):
    rand_init = self.uniform_initializer
    self.word_embeddings = []
    self.encode_emb = []
    self.init = None
    for v in self.config.vocab_configs:
      if v.mode == 'fixed':
        if self.mode == "train":
          word_emb = tf.get_variable(
              name=v.name,
              shape=[v.size, v.dim],
              trainable=False)
          embedding_placeholder = tf.placeholder(
              tf.float32, [v.size, v.dim])
          embedding_init = word_emb.assign(embedding_placeholder)

          rand = np.random.rand(1, v.dim)
          word_vecs = np.load(v.embs_file)
          load_vocab_size = word_vecs.shape[0]
          assert(load_vocab_size == v.size - 1)
          word_init = np.concatenate((rand, word_vecs), axis=0)
          self.init = (embedding_init, embedding_placeholder, word_init)
        
        else:
          word_emb = tf.get_variable(
              name=v.name,
              shape=[v.size, v.dim])

        encode_emb = tf.nn.embedding_lookup(word_emb, self.encode_ids)
        self.word_emb = word_emb
        self.encode_emb.extend([encode_emb, encode_emb])#####

      if v.mode == 'trained':
        for inout in ["", "_out"]:
          word_emb = tf.get_variable(
              name=v.name + inout,
              shape=[v.size, v.dim],
              initializer=rand_init)
          if self.mode == 'train':
            self.word_embeddings.append(word_emb)

          encode_emb = tf.nn.embedding_lookup(word_emb, self.encode_ids)
          self.encode_emb.append(encode_emb)

      if v.mode == 'expand':
        for inout in ["", "_out"]:
          encode_emb = tf.placeholder(tf.float32, (
              None, None, v.dim), v.name + inout)
          self.encode_emb.append(encode_emb)
          word_emb_dict = read_vocab_embs(v.vocab_file + inout + ".txt",
              v.embs_file + inout + ".npy")
          self.word_embeddings.append(word_emb_dict)

      if v.mode != 'expand' and self.mode == 'encode':
        word_emb_dict = read_vocab(v.vocab_file)
        self.word_embeddings.extend([word_emb_dict, word_emb_dict])

将句子中的每一个字都转化为vocab size长度的向量。v.mode的3种模式fixed(使用预训练的embedding)/train(训练)/expand(扩展)。 最终输出的形式[encode_emb,encode_emb],用来获取上下句联系。

5、构建encoderencoder对句子进行encode,得到最终的hidden state,这里可用单层的LSTM网络\双向LSTM\双向GRU。

 def _initialize_cell(self, num_units, cell_type="GRU"):
    if cell_type == "GRU":
      return tf.contrib.rnn.GRUCell(num_units=num_units)
    elif cell_type == "LSTM":
      return tf.contrib.rnn.LSTMCell(num_units=num_units)
    else:
      raise ValueError("Invalid cell type")


  def rnn(self, word_embs, mask, scope, encoder_dim, cell_type="GRU"):
    length = tf.to_int32(tf.reduce_sum(mask, 1), name="length")
    if self.config.bidir:
      if encoder_dim % 2:
        raise ValueError(
            "encoder_dim must be even when using a bidirectional encoder.")
      num_units = encoder_dim // 2
      cell_fw = self._initialize_cell(num_units, cell_type=cell_type)
      cell_bw = self._initialize_cell(num_units, cell_type=cell_type)
      outputs, states = tf.nn.bidirectional_dynamic_rnn(
          cell_fw=cell_fw,
          cell_bw=cell_bw,
          inputs=word_embs,
          sequence_length=length,
          dtype=tf.float32,
          scope=scope)
      if cell_type == "LSTM":
        states = [states[0][1], states[1][1]]
      state = tf.concat(states, 1)
    else:
      cell = self._initialize_cell(encoder_dim, cell_type=cell_type)
      outputs, state = tf.nn.dynamic_rnn(
          cell=cell,
          inputs=word_embs,
          sequence_length=length,
          dtype=tf.float32,
          scope=scope)
      if cell_type == "LSTM":
        state = state[1]
    return state

  def build_encoder(self):
    """Builds the sentence encoder.

    Inputs:
      self.encode_emb
      self.encode_mask

    Outputs:
      self.thought_vectors

    Raises:
      ValueError: if config.bidirectional_encoder is True and config.encoder_dim
        is odd.
    """
    names = ["", "_out"]
    self.thought_vectors = []
    for i in range(2):
      with tf.variable_scope("encoder" + names[i]) as scope:
        if self.config.encoder == "gru":
          sent_rep = self.rnn(self.encode_emb[i], self.encode_mask, scope, self.config.encoder_dim, cell_type="GRU")
        elif self.config.encoder == "lstm":
          sent_rep = self.rnn(self.encode_emb[i], self.encode_mask, scope, self.config.encoder_dim, cell_type="LSTM")
        elif self.config.encoder == 'bow':
          sent_rep = self.bow(self.encode_emb[i], self.encode_mask)
        else:
          raise ValueError("Invalid encoder")

        thought_vectors = tf.identity(sent_rep, name="thought_vectors")
        self.thought_vectors.append(thought_vectors)

可见分别对[encode_emb,encode_emb]进行了encode,得到[thought_vectors,thought_vectors]

6、构建损失函数

def build_loss(self):
    """Builds the loss Tensor.

    Outputs:
      self.total_loss
    """
    all_sen_embs = self.thought_vectors
  
    if FLAGS.dropout:
      mask_shp = [1, self.config.encoder_dim]
      bin_mask = tf.random_uniform(mask_shp) > FLAGS.dropout_rate
      bin_mask = tf.where(bin_mask, tf.ones(mask_shp), tf.zeros(mask_shp))
      src = all_sen_embs[0] * bin_mask
      dst = all_sen_embs[1] * bin_mask
      scores = tf.matmul(src, dst, transpose_b=True)
    else:
      scores = tf.matmul(all_sen_embs[0], all_sen_embs[1], transpose_b=True)###study pre current post

    # Ignore source sentence
    scores = tf.matrix_set_diag(scores, np.zeros(FLAGS.batch_size))
    # Targets
    targets_np = np.zeros((FLAGS.batch_size, FLAGS.batch_size))
    ctxt_sent_pos = list(range(-FLAGS.context_size, FLAGS.context_size + 1))
    ctxt_sent_pos.remove(0)
    for ctxt_pos in ctxt_sent_pos:
      targets_np += np.eye(FLAGS.batch_size, k=ctxt_pos)
    targets_np_sum = np.sum(targets_np, axis=1, keepdims=True)
    targets_np = targets_np/targets_np_sum
    targets = tf.constant(targets_np, dtype=tf.float32)

    # Forward and backward scores    
    f_scores = scores[:-1]
    b_scores = scores[1:]

    losses = tf.nn.softmax_cross_entropy_with_logits(
        labels=targets, logits=scores)
  
    loss = tf.reduce_mean(losses)

    tf.summary.scalar("losses/ent_loss", loss)
    self.total_loss = loss

    if self.mode == "eval":
      f_max = tf.to_int64(tf.argmax(f_scores, axis=1))
      b_max = tf.to_int64(tf.argmax(b_scores, axis=1))

      targets = range(FLAGS.batch_size - 1)
      targets = tf.constant(list(targets), dtype=tf.int64)
      fwd_targets = targets + 1

      names_to_values, names_to_updates = tf.contrib.slim.metrics.aggregate_metric_map({
        "Acc/Fwd Acc": tf.contrib.slim.metrics.streaming_accuracy(f_max, fwd_targets), 
        "Acc/Bwd Acc": tf.contrib.slim.metrics.streaming_accuracy(b_max, targets)
      })

      for name, value in names_to_values.items():
        tf.summary.scalar(name, value)

      self.eval_op = names_to_updates.values()

损失函数图解如下:
基于Quick_Thought Vectors的Sentence2Vec神经网络实现_第1张图片
用 tf.nn.softmax_cross_entropy_with_logits(labels=targets, logits=scores)进行交叉熵,从targets可以看出quick_thought思想是根据上下文(上一句和下一句)来推出目标句的相似性,且上文和下文的权重是固定的(静态)有点过于简单了,可能这样才能达到quick-thought的性能,考虑到quick_thought 评估里的例子有电影情感分类(二分类),于是我用quick_thought训练出来的句子向量进行多分类任务,效果不是很好,个人认为没有学习到目标句的特征不适合做多分类任务。
具体论文复现的代码 https://github.com/lajanugen/S2V (英文)
修改 https://github.com/jinjiajia/Quick_Thought (中文)

你可能感兴趣的:(NLP)