一、前言
1、Skip-Thought-Vector论文 代码复现 https://github.com/ryankiros/skip-thoughts
2、本文假设读者已了解Skip-Thought-Vector和RNN相关基础
3、quick_thought 论文:Lajanugen Logeswaran, Honglak Lee, An efficient framework for learning sentence representations. In ICLR, 2018.
二、实战
1、对数据进行分句(去掉过短的句子)、删除频率高的句子、分词
def fenju(data):
sentence=[]
for i in range(len(data)):
try:
m = re.findall('。',data[i][0])
# print(m)
if data[i][1] is not None and len(m)>0:
if len(m)>1:
content=data[i][0].split('。')
# print(content)
for c in range(len(content)):
if len(content[c])>10:
sentence.append(content[c]+'。')
elif len(data[i][0])>10:
sentence.append(data[i][0])
else:
continue
except:
continue
return sentence
def _process_sentence_list(sentence_list, threshold=0.01):
sentence_count = Counter(sentence_list)
total_count = len(sentence_list)
# 计算句子频率
sentence_freqs = {w: c / total_count for w, c in sentence_count.items()}
# 剔除出现频率太高的句子
sentence=[]
for w in range(len(sentence_list)):
if sentence_freqs[sentence_list[w]] < threshold:
sentence.append(sentence_list[w])
else:
continue
return sentence
def fenci(alltext, writefile, filename):
if not os.path.exists(writefile):
os.makedirs(writefile)
sentence = [' '.join(jieba.lcut(''.join(text.split()))) for text in alltext]
print(sentence)
with open(os.path.join(writefile, filename), "w") as fw:
fw.write("\n".join(sentence))
2、构建vocab、TFRecord文件(详细看github代码)
3、模型输入定义(3种模式train/eval/encode)
def build_inputs(self):
if self.mode == "encode":
encode_ids = tf.placeholder(tf.int64, (None, None), name="encode_ids")
encode_mask = tf.placeholder(tf.int8, (None, None), name="encode_mask")
else:
# Prefetch serialized tf.Example protos.
input_queue = input_ops.prefetch_input_data(
self.reader,
FLAGS.input_file_pattern,
shuffle=FLAGS.shuffle_input_data,
capacity=FLAGS.input_queue_capacity,
num_reader_threads=FLAGS.num_input_reader_threads)
print("input_queue",input_queue)
# Deserialize a batch.
serialized = input_queue.dequeue_many(FLAGS.batch_size)
encode = input_ops.parse_example_batch(serialized)
encode_ids = encode.ids
encode_mask = encode.mask
self.encode_ids = encode_ids
self.encode_mask = encode_mask
由于我们每个batch中句子都进行了padding,为了防止padding对训练的影响,这里需要传递掩码给到RNN网络–每个句子各自的原始长度(encode_mask)。
4、对输入句子进行embedding
def build_word_embeddings(self):
rand_init = self.uniform_initializer
self.word_embeddings = []
self.encode_emb = []
self.init = None
for v in self.config.vocab_configs:
if v.mode == 'fixed':
if self.mode == "train":
word_emb = tf.get_variable(
name=v.name,
shape=[v.size, v.dim],
trainable=False)
embedding_placeholder = tf.placeholder(
tf.float32, [v.size, v.dim])
embedding_init = word_emb.assign(embedding_placeholder)
rand = np.random.rand(1, v.dim)
word_vecs = np.load(v.embs_file)
load_vocab_size = word_vecs.shape[0]
assert(load_vocab_size == v.size - 1)
word_init = np.concatenate((rand, word_vecs), axis=0)
self.init = (embedding_init, embedding_placeholder, word_init)
else:
word_emb = tf.get_variable(
name=v.name,
shape=[v.size, v.dim])
encode_emb = tf.nn.embedding_lookup(word_emb, self.encode_ids)
self.word_emb = word_emb
self.encode_emb.extend([encode_emb, encode_emb])#####
if v.mode == 'trained':
for inout in ["", "_out"]:
word_emb = tf.get_variable(
name=v.name + inout,
shape=[v.size, v.dim],
initializer=rand_init)
if self.mode == 'train':
self.word_embeddings.append(word_emb)
encode_emb = tf.nn.embedding_lookup(word_emb, self.encode_ids)
self.encode_emb.append(encode_emb)
if v.mode == 'expand':
for inout in ["", "_out"]:
encode_emb = tf.placeholder(tf.float32, (
None, None, v.dim), v.name + inout)
self.encode_emb.append(encode_emb)
word_emb_dict = read_vocab_embs(v.vocab_file + inout + ".txt",
v.embs_file + inout + ".npy")
self.word_embeddings.append(word_emb_dict)
if v.mode != 'expand' and self.mode == 'encode':
word_emb_dict = read_vocab(v.vocab_file)
self.word_embeddings.extend([word_emb_dict, word_emb_dict])
将句子中的每一个字都转化为vocab size长度的向量。v.mode的3种模式fixed(使用预训练的embedding)/train(训练)/expand(扩展)。 最终输出的形式[encode_emb,encode_emb],用来获取上下句联系。
5、构建encoderencoder对句子进行encode,得到最终的hidden state,这里可用单层的LSTM网络\双向LSTM\双向GRU。
def _initialize_cell(self, num_units, cell_type="GRU"):
if cell_type == "GRU":
return tf.contrib.rnn.GRUCell(num_units=num_units)
elif cell_type == "LSTM":
return tf.contrib.rnn.LSTMCell(num_units=num_units)
else:
raise ValueError("Invalid cell type")
def rnn(self, word_embs, mask, scope, encoder_dim, cell_type="GRU"):
length = tf.to_int32(tf.reduce_sum(mask, 1), name="length")
if self.config.bidir:
if encoder_dim % 2:
raise ValueError(
"encoder_dim must be even when using a bidirectional encoder.")
num_units = encoder_dim // 2
cell_fw = self._initialize_cell(num_units, cell_type=cell_type)
cell_bw = self._initialize_cell(num_units, cell_type=cell_type)
outputs, states = tf.nn.bidirectional_dynamic_rnn(
cell_fw=cell_fw,
cell_bw=cell_bw,
inputs=word_embs,
sequence_length=length,
dtype=tf.float32,
scope=scope)
if cell_type == "LSTM":
states = [states[0][1], states[1][1]]
state = tf.concat(states, 1)
else:
cell = self._initialize_cell(encoder_dim, cell_type=cell_type)
outputs, state = tf.nn.dynamic_rnn(
cell=cell,
inputs=word_embs,
sequence_length=length,
dtype=tf.float32,
scope=scope)
if cell_type == "LSTM":
state = state[1]
return state
def build_encoder(self):
"""Builds the sentence encoder.
Inputs:
self.encode_emb
self.encode_mask
Outputs:
self.thought_vectors
Raises:
ValueError: if config.bidirectional_encoder is True and config.encoder_dim
is odd.
"""
names = ["", "_out"]
self.thought_vectors = []
for i in range(2):
with tf.variable_scope("encoder" + names[i]) as scope:
if self.config.encoder == "gru":
sent_rep = self.rnn(self.encode_emb[i], self.encode_mask, scope, self.config.encoder_dim, cell_type="GRU")
elif self.config.encoder == "lstm":
sent_rep = self.rnn(self.encode_emb[i], self.encode_mask, scope, self.config.encoder_dim, cell_type="LSTM")
elif self.config.encoder == 'bow':
sent_rep = self.bow(self.encode_emb[i], self.encode_mask)
else:
raise ValueError("Invalid encoder")
thought_vectors = tf.identity(sent_rep, name="thought_vectors")
self.thought_vectors.append(thought_vectors)
可见分别对[encode_emb,encode_emb]进行了encode,得到[thought_vectors,thought_vectors]
6、构建损失函数
def build_loss(self):
"""Builds the loss Tensor.
Outputs:
self.total_loss
"""
all_sen_embs = self.thought_vectors
if FLAGS.dropout:
mask_shp = [1, self.config.encoder_dim]
bin_mask = tf.random_uniform(mask_shp) > FLAGS.dropout_rate
bin_mask = tf.where(bin_mask, tf.ones(mask_shp), tf.zeros(mask_shp))
src = all_sen_embs[0] * bin_mask
dst = all_sen_embs[1] * bin_mask
scores = tf.matmul(src, dst, transpose_b=True)
else:
scores = tf.matmul(all_sen_embs[0], all_sen_embs[1], transpose_b=True)###study pre current post
# Ignore source sentence
scores = tf.matrix_set_diag(scores, np.zeros(FLAGS.batch_size))
# Targets
targets_np = np.zeros((FLAGS.batch_size, FLAGS.batch_size))
ctxt_sent_pos = list(range(-FLAGS.context_size, FLAGS.context_size + 1))
ctxt_sent_pos.remove(0)
for ctxt_pos in ctxt_sent_pos:
targets_np += np.eye(FLAGS.batch_size, k=ctxt_pos)
targets_np_sum = np.sum(targets_np, axis=1, keepdims=True)
targets_np = targets_np/targets_np_sum
targets = tf.constant(targets_np, dtype=tf.float32)
# Forward and backward scores
f_scores = scores[:-1]
b_scores = scores[1:]
losses = tf.nn.softmax_cross_entropy_with_logits(
labels=targets, logits=scores)
loss = tf.reduce_mean(losses)
tf.summary.scalar("losses/ent_loss", loss)
self.total_loss = loss
if self.mode == "eval":
f_max = tf.to_int64(tf.argmax(f_scores, axis=1))
b_max = tf.to_int64(tf.argmax(b_scores, axis=1))
targets = range(FLAGS.batch_size - 1)
targets = tf.constant(list(targets), dtype=tf.int64)
fwd_targets = targets + 1
names_to_values, names_to_updates = tf.contrib.slim.metrics.aggregate_metric_map({
"Acc/Fwd Acc": tf.contrib.slim.metrics.streaming_accuracy(f_max, fwd_targets),
"Acc/Bwd Acc": tf.contrib.slim.metrics.streaming_accuracy(b_max, targets)
})
for name, value in names_to_values.items():
tf.summary.scalar(name, value)
self.eval_op = names_to_updates.values()
损失函数图解如下:
用 tf.nn.softmax_cross_entropy_with_logits(labels=targets, logits=scores)进行交叉熵,从targets可以看出quick_thought思想是根据上下文(上一句和下一句)来推出目标句的相似性,且上文和下文的权重是固定的(静态)有点过于简单了,可能这样才能达到quick-thought的性能,考虑到quick_thought 评估里的例子有电影情感分类(二分类),于是我用quick_thought训练出来的句子向量进行多分类任务,效果不是很好,个人认为没有学习到目标句的特征不适合做多分类任务。
具体论文复现的代码 https://github.com/lajanugen/S2V (英文)
修改 https://github.com/jinjiajia/Quick_Thought (中文)