树链基础知识

“在一棵树上进行路径的修改、求极值、求和”乍一看只要线段树就能轻松解决,实际上,仅凭线段树是不能搞定它的。我们需要用到一种貌似高级的复杂算法——树链剖分。

 
  树链,就是树上的路径。剖分,就是把路径分类为 重链轻链
   记siz[v]表示以v为根的子树的节点数,dep[v]表示v的深度(根深度为1),top[v]表示v所在的链的顶端节点,fa[v]表示v的父亲,son[v]表示与v在同一重链上的v的儿子节点(姑且称为 重儿子),w[v]表示v与其父亲节点的连边(姑且称为v的父边)在线段树中的位置。只要把这些东西求出来,就能用logn的时间完成原问题中的操作。

    重儿子:siz[u]为v的子节点中siz值最大的,那么u就是v的重儿子。
    轻儿子:v的其它子节点。
    重边:点v与其重儿子的连边。
    轻边:点v与其轻儿子的连边。
    重链:由重边连成的路径。
    轻链:轻边。

   剖分后的树有如下性质:
    性质1:如果(v,u)为轻边,则siz[u] * 2< siz[v];
    性质2:从根到某一点的路径上轻链、重链的个数都不大于logn。

你可能感兴趣的:(ACM算法,树链)