无向图的邻接表创建以及图的深度和…

#define MAXSIZE 20
#define FALSE 0
#define TRUE 1

#include
#include
#include
using namespace std;

typedef int Status;
//…………………………………………队列结构…………………… 
typedef struct qnode
int data; 
struct qnode *next; 
}qnode,*queueptr; 
typedef struct 
queueptr front; 
queueptr rear;  
}linkqueue;

//…………………………………………邻接表结构………………………… 
typedef struct arcnode//弧结点 
int adjvex; //该弧指向的顶点的位置 
struct arcnode *nextarc; //弧尾相同的下一条弧 
}arcnode; 
typedef struct vnode//邻接链表顶点头接点 
char data;//结点信息 
arcnode *firstarc;//指向第一条依附该结点的弧的指针 
}vnode,adjlist;

//…………………………………………图结构………………………… 
typedef struct//图的定义 
{
adjlist vertices; 
int vexnum,arcnum; //顶点数,弧的条数
}algraph; 
//无向图

//…………………………………………链队列定义…………………… 
void InitQueue(linkqueue &q)//初始化队列 
{
q.rear  =  (queueptr)malloc(sizeof(qnode));  
if(!q.front)  exit(-1); //分配空间失败
q.front  =  q.rear; q.front->next = NULL; 
}
Status Queue_empty(linkqueue q)//判断队为空
if(q.front  ==   q.rear) return TRUE;
else return FALSE; 
Status EnQueue(linkqueue &q,int e)//入队 
queueptr p; 
p = (queueptr)malloc(sizeof(qnode)); if(!p) exit(-1); //分配空间失败

p->data = e;   p->next = NULL;
q.rear->next = p;
q.rear = p; 
return TRUE; 
Status DeQueue(linkqueue &q,int &e)//出队
queueptr p; 
if( Queue_empty(q) ) return FALSE; 

p = q.front->next; 
e = p->data; 
q.front->next = p->next; 
if(q.rear ==  p)   q.rear = q.front; 
free(p); 
return TRUE; 

//…………………………………………邻接表定义…………………… 
int localvex(adjlist G_L[],char v)//返回V的位置 
{  
int i = 0;
//printf("da = ‘%c’ v = ‘%c’\n",G_L[i].data,v);
while(G_L[i].data != v)
//printf("da = %c ,v = %c",G_L[i].data,v); 
++i;
}
//printf("i = %d\n",i);
return i;
}

void Print_G_L( algraph G,adjlist * G_L)
{
cout<<"————————图的邻接表——————"<
for(int i=0; i
{
printf(" [%d] (%c) : ",i,G_L[i].data);
arcnode * q = G_L[i].firstarc;
while(q ) {
printf(" %d",q->adjvex);
q = q->nextarc;
}
printf("\n");
}
}
Status CreteAdj( algraph &G ,adjlist *G_L)//用邻接表存储图
cout<>G.vexnum >>G.arcnum;
for(int i=0; i < G.vexnum; i++)
{
printf("请输入图的第%d个顶点(大写字母A,B,C...):",i+1); 

cin>>G_L[i].data;
//printf("dat = %c",G_L[i].data);
}
for(int i=0;i

for(int i=0; i < G.arcnum; i++)
{
char first_v,second_v;
printf("请输入图的第%d条边,两顶点间逗号隔开(如‘A,B’不包括引号):",i+1);
getchar();
scanf("%c,%c",&first_v,&second_v);

//printf("fir = %c, sec = %c",first_v,second_v);

int loc1 = localvex( G_L,first_v  );//第1个顶点下标
int loc2 = localvex( G_L,second_v );//第2个顶点下标

//printf("loc1 = %d, loc2 = %d\n",loc1,loc2);

arcnode * p = (arcnode * )malloc(sizeof(arcnode)); if(!p) exit(-1); //first->second边
p->adjvex = loc2;  p->nextarc = NULL;
arcnode * q ;
if( G_L[loc1].firstarc == NULL || G_L[loc1].firstarc->adjvex < p->adjvex) 
{ p->nextarc = G_L[loc1].firstarc;   G_L[loc1].firstarc = p;  }//p插在第一个
else{ //寻找新非零元在航标中的插入位置
for( q = G_L[loc1].firstarc ; (q->nextarc)&&(q->nextarc->adjvex < p->adjvex ); q = q->nextarc ) ; //循环到合适位置,这是个空循环
p->nextarc = q->nextarc; q->nextarc = p; //完成行插入
}//else

arcnode * p2 = (arcnode * )malloc(sizeof(arcnode)); if(!p2) exit(-1);//second->first边
p2->adjvex = loc1;  p2->nextarc = NULL;
if( G_L[loc2].firstarc == NULL || G_L[loc2].firstarc->adjvex < p2->adjvex) 
{ p2->nextarc = G_L[loc2].firstarc;   G_L[loc2].firstarc = p2;  }//p插在第一个
else{ //寻找新非零元在航标中的插入位置
for( q = G_L[loc2].firstarc ; (q->nextarc)&&(q->nextarc->adjvex < p2->adjvex ); q = q->nextarc ) ; //循环到合适位置,这是个空循环
p2->nextarc = q->nextarc; q->nextarc = p2; //完成行插入
}//else

}
return TRUE;
}
void BFS( algraph G,adjlist G_L[] )//广度优先遍历 
int i,e; arcnode * p;
int visit[MAXSIZE];//标志元素是否已被访问过,0:未访问, 1:已访问
linkqueue q; 
InitQueue(q); 
for(i=0; i != G.vexnum;++i)  visit[i] = FALSE; 
cout<<"广度遍历为:";
for(i=0; i!=G.vexnum; ++i)
if( visit[i]==FALSE ) 
visit[i] = TRUE ; 
cout<< G_L[i].data; 
EnQueue(q , i ); 
while( !Queue_empty(q) ) 
DeQueue(q,e); 
for(  p = G_L[e].firstarc; p; p = p->nextarc)
{
if( visit[p->adjvex]==FALSE ) //未访问
{
visit[p->adjvex] = TRUE; 
cout<adjvex].data; 
EnQueue(q,p->adjvex); 
}//for
} //while
} //if
cout<
return;
void DFS(adjlist G_L[],int v,int visit[])
{// 从顶点v出发,深度优先搜索遍历连通图 G
cout<
visit[v] = TRUE;
arcnode * q = G_L[v].firstarc;
while( q )
{
if( !visit[q->adjvex])
DFS(G_L,q->adjvex,visit);
q = q->nextarc;
}
} // DFS





int main() 
{
algraph G;//图
adjlist G_L[MAXSIZE];//图的邻接表
int visit[MAXSIZE] ={ FALSE }; //该数组用来标志对应下标的元素是否已被访问,初始 FALSE 未访问

CreteAdj( G ,G_L);
Print_G_L(G,G_L);
BFS(G,G_L);
cout<<"深度遍历为:";
DFS(G_L,0,visit); cout<


return 0;

你可能感兴趣的:(无向图的邻接表创建以及图的深度和…)