基于朴素贝叶斯模型的文本分类

 (原创文章,转载请注明出处!)

一、朴素贝叶斯模型

模型一:

将一个文本文档使用一个词的向量来表示。

通常文档中出现的词的个数是有限的,假设要将文档分成两类(类别0、1),分类的所有文档可能出现100个词(词典中词的个数,在实际应用中,选择训练文档中出现次数最多的n个词,n从10000到50000),那么一个特定的文档就可以用一个100维的向量来表示。每一维上要么是0,要么是1。

朴素贝叶斯模型的思想是分别对两类文档建模,那么文档类别0和类别1都会通过训练学习到自己的模型参数p(x|y=0)、p(x|y=1)、p(y=1),那么当来了个新文档x,,分别用类别0和类别1的模型来计算p(y=0|x,)=p(x|y=0)p(y=0),p(y=1|x,)=p(x|y=1)p(y=1),然后比较哪个概率大就决定新的文档属于哪一类。(或者是比较log(p(x|y=0)) + log(p(y=0)),log(p(x|y=1)) + log(p(y=1)) )

要计算一个文档的类别,首先要计算每个词与文档类别的关系。

运用朴素贝叶斯模型的来进行计算时,还有一个关键的假设:各个词与类别是条件独立的。写成公式如下:

p(w1w2w3......w99w100|y) = p(w1|y)p(w2|y,w1)p(w3|y,w1,w2)......p(w100|y,w1,w2,...,w99)

                                      =p(w1|y)p(w2|y)p(w3|y)......p(w100|y)

那么,Φj|y=1=p(wj=1|y=1),词j与类别1的关系

        Φj|y=0=p(wj=1|y=0),词j与类别0的关系

建立以Φj|y=1,Φj|y=0,Φy=1=p(y=1)为参数的似然函数,通过极大似然法可以求出:

Φj|y=1=∑i=1...m[xji=1 and yi=1] / ∑i=1...m[yi=1] ,用训练样本中类别为1且出现了词j的文档数 除以 所有类别为1的文档数

Φj|y=0=∑i=1...m[xji=1 and yi=0] / ∑i=1...m[yi=0] ,用训练样本中类别为0且出现了词j的文档数 除以 所有类别为0的文档数

Φy=1=训练样本中类别为1的文数 / 训练样本中所有文档数

当来了一个新样本x,,x,=[w1,  w2,  w3,  ...... w100, ]

计算p(y=1|x,) = [p(x,|y=1)p(y=1)] / p(x,)    # 将p(x)忽略掉

                     = [Φj=1|y=1w1,     Φj=2|y=1w2,     Φj=3|y=1w3,...... Φj=100|y=1w100,]    #将该向量中不为0的元素求乘积

                         * Φy=1

 p(y=0|x,)= [Φj=1|y=0w1,     Φj=2|y=0w2,     Φj=3|y=0w3,...... Φj=100|y=0w100,]    #将该向量中不为0的元素求乘积

                  * (1 - Φy=1)

 比较两个值的大小,就能确定新样本的类别。

 

模型二:

在以上的模型中,只关注一个词是否在文档中出现,出现了就将词向量中对应的元素置为1,否则就是0。

但通常某个词可能在一个文档的不同位置多次出现,如何能更好的描述这一客观事实?

假设词典中词的总数还是100个,词的序号k={1,2,3, ... , 100},共有m个文档,第个i文档包括有ni个词,文档xi的第j个词为xji,xji可以是总共100个词中的任意一个。

词典中第K个词与类别1的关系:Φk|y=1=∑i=1...mj=1...ni[xji=k and yi=1] / ∑i=1...m[(yi=1)*ni], 

其中[xji=k and yi=1]表示第i个文档时类型1,且在该文档中的第j个词是词K。

词典中第K个词与类别0的关系:Φk|y=0=∑i=1...mj=1...ni[xji=k and yi=0] / ∑i=1...m[(yi=0)*ni],

其中[xji=k and yi=0]表示第i个文档时类型0,且在该文档中的第j个词是词K。

Φy=1同上一模型中一样。

通过计算得到 类别1的词典向量:[Φ1|y=1    Φ2|y=1    Φ3|y=1    ......   Φ100|y=1 ], 类别0的词典向量:[Φ1|y=0    Φ2|y=0    Φ3|y=0    ......   Φ100|y=0 ]

当来了一个新样本x,,有n个词,x,=[w1,  w2,  w3,  ...... wn, ]。

计算p(y=1|x,) ={遍历x,把其中每个词对应的Φk|y=1求乘机} * Φy=1  ,p(y=0|x,) ={遍历x,把其中每个词对应的Φk|y=0求乘机} * Φy=1

比较两者中,较大者,就是新样本对应的类别。

 

还有一点:

如果词典中的一个词在所有训练样本都没有出现,但在新文档中出现了,通过训练,计算的该词的Φk|y=1=0,Φk|y=0=0 (模型一中也类似)。

那么计算新文档的p(y=1|x,), p(y=0|x,) 就都会是0.

如何克服这个问题?可以将计算Φk|y=1和Φk|y=0的公式做一点修改:

Φk|y=1={∑i=1...mj=1...ni[xji=k and yi=1]   + 1}  /  {∑i=1...m[(yi=1)*ni]  + 100 }

Φk|y=0={∑i=1...mj=1...ni[xji=k and yi=0]   + 1}  /  {∑i=1...m[(yi=0)*ni]  + 100}

 

二、实现

使用R编程语言,基于模型二的实现代码如下:

## = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
## initialize
## = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
library(Matrix)
numTrainDocs <- 700   # number of documents, 400, 100, 50
numTokens <- 2500      # number of words totally

trDoc <- read.table(file="train-features.txt")
trLabel <- read.table(file="train-labels.txt")
x <- sparseMatrix(i=trDoc$V1, j=trDoc$V2, x=trDoc$V3, dims=c(numTrainDocs,numTokens))
x <- as.matrix(x)
y <- matrix(data=trLabel$V1,ncol=1)


## = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
## training
## = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

## 1. calculate the phi of y, i.e. p(y=1)
phiOfy1 <- colSums(y) / dim(y)[1]
phiOfy0 <- 1 - phiOfy1

## 2. calculate the phi of k to given y=1 or 0, i.e. p(Xj=k|y=1)  p(Xj=k|y=0)
## # # #
# The number of parameters is numTokens, which is same to the vocabulary length.
# i.e. Each word in vocabulary is a feature. Each feature need a parameter.
phiArray1 <- numeric(numTokens)  # y=1, parameter vector
phiArray0 <- numeric(numTokens)  # y=0, parameter vector
sum1 <- sum(x[y==1,])
sum0 <- sum(x[y==0,])
for (i in 1:numTokens) {  # calculte each parameter, one by one
    phiArray1[i] <- ( sum(x[y==1,i]) + 1 )  /  ( sum1 + numTokens )
    phiArray0[i] <- ( sum(x[y==0,i]) + 1 )  /  ( sum0 + numTokens )
}


## = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
## test
## = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
xTestDoc <- read.table(file="test-features.txt")
yTest <- read.table(file="test-labels.txt")

xTest <- sparseMatrix(i=xTestDoc$V1, j=xTestDoc$V2, x=xTestDoc$V3)
xTest <- as.matrix(xTest)

numTestDoc <- dim(xTest)[1]
numTestTokens <- dim(xTest)[2]

testDocProbility1 <- xTest %*% as.matrix(log(phiArray1)) + log(phiOfy1)
testDocProbility0 <- xTest %*% as.matrix(log(phiArray0)) + log(phiOfy0)

testLabel <- (testDocProbility1 > testDocProbility0)
testLabel[testLabel == TRUE] <- 1

classErrorNum <- sum(abs(yTest - as.vector(testLabel)))
classErrorRatio <- classErrorNum / numTestDoc
View Code

 

 

三、测试结果

实验的数据中,词共有2500个(词典中词个数),测试四次,训练文档个数分别是700,400,100,50,测试集有260个文档.

训练文档数 错分类文档数 错分率
700 5 1.92%
400 6 2.30%
100 6 2.30%
50 7 2.69%

随着训练文档数增加,错分率下降。总体来说,朴素贝叶斯进行文档分类的错分率还是相对较低的。

 

转载于:https://www.cnblogs.com/activeshj/p/3702480.html

你可能感兴趣的:(基于朴素贝叶斯模型的文本分类)