Canny Edge Dection

Simple Implementation of Canny Algorithm for Edge Detection.
Steps/Algorithm Details :

  1. Convolution with Gaussian Filter Coefficient
  2. Convolution with Canny Filter for Horizontal and Vertical orientation
  3. Calculating directions using atan2
  4. Adjusting to nearest 0, 45, 90, and 135 degree
  5. Non-Maximum Suppression
  6. Hystheresis Thresholding

Input image is in RGB.
Using two values for Thresholding, T_High and T_Low

%Input image
img = imread ('House.jpg');

%Show input image
figure,imshow(img);
img = rgb2gray(img);
img = double (img);

%Value for Thresholding
T_Low = 0.075;
T_High = 0.175;

%Gaussian Filter Coefficient
B = [2, 4, 5, 4, 2; 4, 9, 12, 9, 4;5, 12, 15, 12, 5;4, 9, 12, 9, 4;2, 4, 5, 4, 2 ];
B = 1/159.* B;
%Convolution of image by Gaussian Coefficient
A=conv2(img, B, 'same');
%Filter for horizontal and vertical direction
KGx = [-1, 0, 1; -2, 0, 2; -1, 0, 1];
KGy = [1, 2, 1; 0, 0, 0; -1, -2, -1];
%Convolution by image by horizontal and vertical filter
Filtered_X = conv2(A, KGx, 'same');
Filtered_Y = conv2(A, KGy, 'same');
%Calculate directions/orientations
arah = atan2 (Filtered_Y, Filtered_X);
arah = arah*180/pi;
pan=size(A,1);
leb=size(A,2);
%Adjustment for negative directions, making all directions positive
for i=1:pan
    for j=1:leb
        if (arah(i,j)<0) 
            arah(i,j)=360+arah(i,j);
        end;
    end;
end;
arah2=zeros(pan, leb);
%Adjusting directions to nearest 0, 45, 90, or 135 degree
for i = 1  : pan
    for j = 1 : leb
        if ((arah(i, j) >= 0 ) && (arah(i, j) < 22.5) || (arah(i, j) >= 157.5) && (arah(i, j) < 202.5) || (arah(i, j) >= 337.5) && (arah(i, j) <= 360))
            arah2(i, j) = 0;
        elseif ((arah(i, j) >= 22.5) && (arah(i, j) < 67.5) || (arah(i, j) >= 202.5) && (arah(i, j) < 247.5))
            arah2(i, j) = 45;
        elseif ((arah(i, j) >= 67.5 && arah(i, j) < 112.5) || (arah(i, j) >= 247.5 && arah(i, j) < 292.5))
            arah2(i, j) = 90;
        elseif ((arah(i, j) >= 112.5 && arah(i, j) < 157.5) || (arah(i, j) >= 292.5 && arah(i, j) < 337.5))
            arah2(i, j) = 135;
        end;
    end;
end;
figure, imagesc(arah2); colorbar;
%Calculate magnitude
magnitude = (Filtered_X.^2) + (Filtered_Y.^2);
magnitude2 = sqrt(magnitude);
BW = zeros (pan, leb);

%Non-Maximum Supression, to calculate local maximums
for i=2:pan-1
    for j=2:leb-1
        if (arah2(i,j)==0)
            BW(i,j) = (magnitude2(i,j) == max([magnitude2(i,j), magnitude2(i,j+1), magnitude2(i,j-1)]));
        elseif (arah2(i,j)==45)
            BW(i,j) = (magnitude2(i,j) == max([magnitude2(i,j), magnitude2(i+1,j-1), magnitude2(i-1,j+1)]));
        elseif (arah2(i,j)==90)
            BW(i,j) = (magnitude2(i,j) == max([magnitude2(i,j), magnitude2(i+1,j), magnitude2(i-1,j)]));
        elseif (arah2(i,j)==135)
            BW(i,j) = (magnitude2(i,j) == max([magnitude2(i,j), magnitude2(i+1,j+1), magnitude2(i-1,j-1)]));
        end;
    end;
end;
BW = BW.*magnitude2;
figure, imshow(BW);

%Hysteresis Thresholding(滞后阈值处理)
T_Low = T_Low * max(max(BW));
T_High = T_High * max(max(BW));
T_res = zeros (pan, leb);
for i = 1  : pan
    for j = 1 : leb
        if (BW(i, j) < T_Low)
            T_res(i, j) = 0;
        elseif (BW(i, j) > T_High)
            T_res(i, j) = 1;
        %Using 8-connected components
        elseif ( BW(i+1,j)>T_High || BW(i-1,j)>T_High || BW(i,j+1)>T_High || BW(i,j-1)>T_High || BW(i-1, j-1)>T_High || BW(i-1, j+1)>T_High || BW(i+1, j+1)>T_High || BW(i+1, j-1)>T_High)
            T_res(i,j) = 1;
        end;
    end;
end;
edge_final = uint8(T_res.*255);
%Show final edge detection result
figure, imshow(edge_final)

Canny Edge Dection_第1张图片
link: https://www.mathworks.com/matlabcentral/fileexchange/46859-canny-edge-detection
https://blog.csdn.net/fengye2two/article/details/79190759
(对算法进行介绍)

你可能感兴趣的:(matlab)