- 【强化学习】PyTorch-RL框架
大雨淅淅
人工智能pytorch人工智能python深度学习机器学习
目录一、框架简介二、核心功能三、学习环境配置四、学习资源五、实践与应用六、常见问题与解决方案七、深入理解强化学习概念八、构建自己的强化学习环境九、调试与优化十、参与社区与持续学习一、框架简介PyTorch-RL是一个基于PyTorch框架的深度强化学习项目。它充分利用了PyTorch的强大功能,提供了易于使用且高效的深度强化学习算法实现。该项目的主要编程语言是Python,旨在帮助开发者快速实现和
- 【机器学习实战中阶】音乐流派分类-自动化分类不同音乐风格
精通代码大仙
数据挖掘深度学习python机器学习分类自动化人工智能数据挖掘深度学习
音乐流派分类–自动化分类不同音乐风格在本教程中,我们将开发一个深度学习项目,用于自动化地从音频文件中分类不同的音乐流派。我们将使用音频文件的频率域和时间域低级特征来分类这些音频文件。对于这个项目,我们需要一个具有相似大小和相似频率范围的音频曲目数据集。GTZAN流派分类数据集是音乐流派分类项目中最推荐的数据集,并且它是为了这个任务而收集的。音乐流派分类器模型音乐流派分类关于数据集:GTZAN流派收
- 深度学习项目--基于LSTM的火灾预测研究(pytorch实现)
羊小猪~~
RNNLSTM神经网络案例机器学习/数据分析案例深度学习lstmpytorch人工智能机器学习rnngru
本文为365天深度学习训练营中的学习记录博客原作者:K同学啊前言LSTM模型一直是一个很经典的模型,这个模型当然也很复杂,一般需要先学习RNN、GRU模型之后再学,GRU、LSTM的模型讲解将在这两天发布更新,其中:深度学习基础–一文搞懂RNN深度学习基础–GRU学习笔记(李沐《动手学习深度学习》)这一篇:是基于LSTM模型火灾预测研究,讲述了如何构建时间数据、模型如何构建、pytorch中LST
- 亦菲喊你来学机器学习(21) --数据清洗
方世恩
机器学习人工智能python算法
数据清洗在数据分析和机器学习项目中,数据清洗(DataCleaning)是一个至关重要的步骤,它涉及到处理原始数据中的错误、缺失值、异常值、重复记录以及不一致的格式等问题。data.fillna()是Pandas库中用于处理缺失值(NaN值)的一个非常有用的方法。1.读取数据importpandasaspddata=pd.read_excel('矿物数据.xlsx')data=data[data[
- 深度学习项目实践——qq聊天机器人(transformer)(二)配置环境与部署
Linductor
qq聊天机器人项目深度学习机器人人工智能
深度学习项目实践——qq聊天机器人(transformer)(二)配置环境与部署上一节我们讲解了qq聊天的原理和qq机器人的框架以及运行流程,这一节我们来讲怎么配置环境,部署qq机器人。第一步——配置环境有关代替qq客户端实现反向websocket连接这一部分内容由于一些原因,我无法在这里具体讲解,我把这部分内容放到了github中我的项目内,请自行查看。机器人主体——nonebot2nonebo
- 通过 Docker 部署 WordPress 服务器
shelby_loo
docker服务器容器
今天我们将在阿贝云的免费服务器上进行WordPress的部署测试。阿贝云的免费云服务器配置简直是个宝藏,1核CPU、1GB内存、10GB硬盘和5M带宽,真是不错的免费服务器,适合轻量级应用和学习项目。无论你是开发者还是爱好者,阿贝云都能给你提供一个稳定的环境,帮助你快速上手。Docker和WordPress简介Docker是一个开源平台,允许开发者将应用程序及其依赖打包到一个可移植的容器中。通过容
- 学习项目1
m0_62803606
学习
https://blog.csdn.net/qq_64257614/article/details/139217194Zigbee+PC上位机无线控制二维云台开发笔记_无线串口上位机-CSDN博客1.学习1你今天开始开发一个简单易学的PC上位机无线控制二维云台的小型试验项目。这个项目涉及到使用STM32单片机进行云台的控制,以及通过无线通信模块实现PC与云台之间的通信。主要的开发环境和工具包括:#
- PMP这辈子我是不会再考了
欧尼戏精少女
求职招聘职场和发展
我参加的是2023年5月深圳场的考试,D卷,3A通过。职场小白试水考一个证书,学习学习项目管理知识,本以为低分飘过,万万没有想到,成绩出乎意料的不错!!!前期筛选了大量的辅导机构和一堆复习资料,在闺蜜的推荐下报了威班,威班的精讲老师大D老师,讲课十分有趣生动,特别适合我这种小白哈哈哈。串讲和冲刺讲的很精炼。他讲题特别针对考点,能帮助小白快速锁定题干,选择正确答案。还有班班的贴心服务,班班的计划可以
- 【深度学习 transformer】使用pytorch 训练transformer 模型,hugginface 来啦
东华果汁哥
深度学习-文本分类深度学习transformerpytorch
HuggingFace是一个致力于开源自然语言处理(NLP)和机器学习项目的社区。它由几个关键组件组成:Transformers:这是一个基于PyTorch的库,提供了各种预训练的NLP模型,如BERT、GPT、RoBERTa、DistilBERT等。它还提供了一个简单易用的API来加载这些模型,并进行微调以适应特定的下游任务。Datasets:这是一个用于加载和预处理NLP数据集的库,与Tran
- AI深度学习项目-yolo4_tiny 垃圾分类识别系统
毕设宇航
yolov4垃圾识别QQ767172261
项目概述目标本项目旨在开发一个高效的垃圾分类识别系统,利用深度学习技术特别是YOLOv4-tiny版本来实现垃圾的自动分类。YOLOv4-tiny作为YOLOv4的一个轻量化版本,在保证较高精度的同时,能够提供更快的检测速度,非常适合资源受限的设备或者要求实时性的应用场景。技术栈深度学习框架:PyTorch目标检测算法:YOLOv4-tiny编程语言:Python硬件加速:GPU(如果可用)功能特
- 揭秘:屡创奇迹的高绩效行动学习项目是如何设计的
行动学习刘世龙
学了促动技术以后该如何在组织中去实践呢?该怎样规避一些暗礁和风险呢?如何将传统培训与行动学习结合起来?行动学习过程中学员暴露出来的能力短板该如何弥补?针对组织,该如何发动全员参与全覆盖?针对学员的心理干预、行为干预及绩效干预的辅导周期应该间隔多久?开展大型的集中式辅导与小型的分散式辅导该如何做?如何将外部的促动与内部的教练相结合?内部促动师和教练该如何培养?要保证行动学习项目的成功,我们应该建立哪
- 2022-3-31晨间日记
木子冀
今天是什么日子起床:6:30就寝:22:30天气:阴心情:良好纪念日:任务清单昨日完成的任务,最重要的三件事:1.开会讨论项目相关事宜。2.学习项目任务书填写注意事项。3.商讨房子装修事宜。改进:习惯养成:1.记录饮食。2.跳绳,保持运动。3.早起打卡。周目标·完成进度本周工作任务基本完成。学习任务还需努力!学习·信息·阅读阅读时间较少。健康·饮食·锻炼注意控制饮食。加强身体锻炼,跳绳1000下。
- 数据切分的艺术:使用PyTorch的torch.utils.data.random_split精粹指南
2402_85758349
机器学习
数据切分的艺术:使用PyTorch的torch.utils.data.random_split精粹指南在机器学习项目中,合理地分割数据集至关重,它不仅关系到模型训练的有效性,还直接影响到模型的泛化能力。PyTorch提供了一个强大的工具torch.utils.data.random_split,它能够以随机的方式将数据集分割成若干个子集。本文将详细介绍如何使用这一工具进行数据集的随机分割。1.随机
- 深度学习项目实践——QQ聊天机器人(transformer)(三)功能实现的方法——NoneBot2插件结构与编写
Linductor
qq聊天机器人项目机器人transformernonebot
深度学习项目实践——QQ聊天机器人(transformer)(三)功能实现的方法——NoneBot2插件结构与编写在前两节中,我们详细讲解了QQ聊天的原理、QQ机器人的框架与环境配置的流程。本节将重点介绍NoneBot2的插件构成,以及如何从零开始编写一个属于自己的插件。这一篇文章主要就是充当搬运工,参考了nonebot2的官方文档第一步:了解NoneBot2的架构在开始编写插件之前,我们先来了解
- spark应用程序转换_4.Spark特征提取、转换和选择 - 简书
weixin_39956182
spark应用程序转换
在实际机器学习项目中,我们获取的数据往往是不规范、不一致、有很多缺失数据,甚至不少错误数据,这些数据有时又称为脏数据或噪音,在模型训练前,务必对这些脏数据进行处理,否则,再好的模型,也只能脏数据进,脏数据出。这章我们主要介绍对数据处理涉及的一些操作,主要包括:特征提取特征转换特征选择4.1特征提取特征提取一般指从原始数据中抽取特征。4.1.1词频-逆向文件频率(TF-IDF)词频-逆向文件频率(T
- Keras深度学习框架实战(2):估计模型训练所需的样本量
MUKAMO
AIPython应用Keras框架深度学习keras人工智能
1、模型训练样本量评估概述1.1样本量评估的意义预估模型需要的样本量对于机器学习项目的成功至关重要,以下是几个主要原因:防止过拟合与欠拟合:过拟合:当模型在训练数据上表现极好,但在未见过的测试数据上表现糟糕时,就发生了过拟合。这通常是因为模型过于复杂,而训练数据不足以支持其学习数据的真实模式。通过预估足够的样本量,我们可以减少过拟合的风险。欠拟合:与过拟合相反,欠拟合是模型未能捕捉到数据中的关键模
- Java项目的真实开发流程、以及面试前的准备说辞
小满只想睡觉
java面试开发语言
介绍项目是必不可少的Java面试环节,求职者需要借此证明自己真实Java项目的经验,如果再做的好的话,需要借此展开自己的亮点说辞。不过之前如果只有学习项目经验,比如是自己跑通一个项目,或者是在培训班里通过一个SpringBoot项目入门Java,那么这些学习项目的开发流程其实和公司里真实Java项目,是有一定差距的。在转行之类需要真实项目的场景里,如果仅仅介绍学习项目里的开发流程和开发细节,那么真
- 《Python机器学习项目实战》书籍介绍
袁袁袁袁满
python机器学习开发语言
文章目录书籍介绍主要内容书籍目录书籍介绍《Python机器学习项目实战》带领大家在构建实际项目的过程中,掌握关键的机器学习概念!使用机器学习,我们可完成客户行为分析、价格趋势预测、风险评估等任务。要想掌握机器学习,需要有优质的范例、清晰的讲解和大量的练习。《Python机器学习项目实战》完全满足这三点!《Python机器学习项目实战》展示了现实、实用的机器学习场景,并全面、清晰地介绍了机器学习的关
- 适合编程初学者的开源云笔记系统(NodeJS版)
蓝不蓝编程
目标为编程初学者打造入门学习项目,使用各种主流编程语言来实现。让想学编程的,一个都不落下。image上述基本涵盖了当前编程开发所有主流语言。左侧为前端版本:安卓、iOS、鸿蒙、Flutter、Vue、uni-app。右侧为服务器端版本:Java、Python、Go、PHP、NodeJS前端效果图image支持特性注册、登录云笔记增删改查支持mysql数据库开发工具下载VisualStudioCod
- 深度学习项目-基于深度学习的股票价格预测研究
雅致教育
计算机毕业设计深度学习人工智能
概要 随着经济的发展,中国股票市场的规模持续扩大,早已成为金融投资的重要部分,掌握股票市场的变化规律无论是对监管者还是投资者都具有极其重要的意义。正因如此,人们不断探索着股票市场的变化规律,其中使用深度学习预测股价是当前国内国际研究与应用的热点。 本文首先从有效市场假说和分形市场假说两个角度讨论了中国股票市场的有效性,说明股票市场具有复杂的非线性特征。其次,结合股票市场特征对比了当前的预测方法
- 【编程入门】应用市场(Java版)
蓝不蓝编程
背景前面已输出多个系列:《十余种编程语言做个计算器》《十余种编程语言写2048小游戏》《17种编程语言+10种排序算法》《十余种编程语言写博客系统》《十余种编程语言写云笔记》《N种编程语言做个记事本》目标为编程初学者打造入门学习项目,使用各种主流编程语言来实现。[图片上传失败...(image-af9b3a-1677333595958)]左侧为前端版本:安卓、iOS、鸿蒙、Flutter、Vue、
- 从别人的开源项目学习并吸收经验,然后逐步搭建自己的Java项目是一个很好的学习方法
如饥似渴的rocky
Java开发Java后台开发web开发java开源
从别人的开源项目学习并吸收经验,然后逐步搭建自己的Java项目是一个很好的学习方法。以下是一些建议的步骤,帮助你从0开始搭建并不断完善自己的Java项目,直至达到高可靠、高稳定、高并发、高数据安全,并可以拆分为微服务的大型高质量项目:选择合适的开源项目:寻找与你感兴趣的技术领域或业务场景相关的开源项目。查看项目的文档、活跃度、社区支持情况等,确保项目有足够的参考价值。学习项目架构:仔细研究项目的整
- 已解决ModuleNotFoundError: No module named ‘tensorflow‘异常的正确解决方法,亲测有效!!!
小 明
Bug解决大全tensorflow人工智能pythonjava开发语言ExceptionError
已解决ModuleNotFoundError:Nomodulenamed'tensorflow'异常的正确解决方法,亲测有效!!!文章目录问题分析报错原因解决思路解决方法总结在深度学习和机器学习项目中,TensorFlow是一个极为常用和功能强大的库。如果你在导入TensorFlow时遭遇到了ModuleNotFoundError:Nomodulenamed'tensorflow'这一错误,那么本
- 【机器学习案例6】使用机器学习从图像中提取突出的颜色(含源码)
suoge223
机器学习实用指南机器学习人工智能python
专栏导读作者介绍:工学博士,高级工程师,专注于工业软件算法研究本文已收录于专栏:《机器学习实用指南》本专栏旨在提供1.机器学习经典案例及源码;2.开源机器学习训练数据集;3.机器学习前沿专业博文。以案例的形式从实用的角度出发,快速上手机器学习项目,在案例中成长,摆脱按部就班填鸭式教学。欢迎订阅专栏,订阅用户可私聊进入机器学习交流群(知识交流、问题解答),并获赠丰厚的机器学习相关学习资料(教材、源码
- 【机器学习案例7】计算机视觉中的小物体检测:基于补丁的方法
suoge223
机器学习实用指南机器学习计算机视觉人工智能
专栏导读作者简介:工学博士,高级工程师,专注于工业软件算法研究本文已收录于专栏:《机器学习实用指南》本专栏旨在提供1.机器学习经典案例及源码;2.开源机器学习训练数据集;3.机器学习前沿专业博文。以案例的形式从实用的角度出发,快速上手机器学习项目,在案例中成长,摆脱按部就班填鸭式教学。欢迎订阅专栏,订阅用户可私聊进入机器学习交流群(知识交流、问题解答),并获赠丰厚的机器学习相关学习资料(教材、源码
- 【机器学习笔记】 15 机器学习项目流程
RIKI_1
机器学习机器学习笔记人工智能
机器学习的一般步骤数据清洗数据清洗是指发现并纠正数据文件中可识别的错误的最后一道程序,包括检查数据一致性,处理无效值和缺失值等。与问卷审核不同,录入后的数据清理一般是由计算机而不是人工完成。探索性数据分析(EDA探索性数据分析(EDA)是一个开放式流程,我们制作绘图并计算统计数据,以便探索我们的数据。目的是找到异常,模式,趋势或关系。这些可能是有趣的(例如,找到两个变量之间的相关性),或者它们可用
- Spring && SpringMVC && Mybatis
知code
java开发语言程序人生
全网最新SSM快速练手学习项目——简单超易懂系列前言——SSM回顾SpringMybatisSpringMVC1、导入ssm框架的基本依赖2、SSM工程整合流程2.1、数据库配置文件db.properties2.2、mybatis配置文件mybatisConfig.xml2.3、spring配置文件applicationContext.xml2.3.1applicationContext_dao.
- JAVA项目一 家庭收支记账软件
D_D_zy
javajava基础java
JAVA学习项目一家庭收支记账软件学习项目之一家庭收支记账软件项目任务项目技术实现分析流程分析解决思路Utility工具类主程序实现循环语句分支语句代码说明实验总结学习项目之一家庭收支记账软件项目任务模拟实现基于文本界面的家庭记账收支软件。该软件能够记录个人收入或支出,并能够打印出收支明细概况。项目采用分级菜单方式,主菜单如下:项目技术局部变量和基本数据类型。循环语句和分支语句。方法调用和返回值的
- 【复盘】今天是平安夜
小灵仙子
大家好,我是灵仙,今天是2020.12.24,这是我的62/365进化日课:日思今天最重要的事情是什么?1️⃣给自己的下一年的目标加上了起限2️⃣考试就要有个考试的样子,好好开始看书,每天花一个小时的时间在这件事上3主持了早上的教练晨会日习今天学到了哪些知识?升级了哪些认知?提升了哪些能力?1️⃣jmeter的逻辑控制器2️⃣开始学习项目管理师日省你今天有哪些缺憾,或者值得反思与改进的事情1️⃣今
- Task 11 XGBoost 算法分析与案例调参实例
沫2021
1.XGBoost算法XGBoost是陈天奇等人开发的一个开源机器学习项目,高效地实现了GBDT算法并进行了算法和工程上的许多改进,被广泛应用在Kaggle竞赛及其他许多机器学习竞赛中并取得了不错的成绩。XGBoost是一个优化的分布式梯度增强库,旨在实现高效,灵活和便携。它在GradientBoosting框架下实现机器学习算法。XGBoost提供了并行树提升(也称为GBDT,GBM),可以快速
- Java实现的基于模板的网页结构化信息精准抽取组件:HtmlExtractor
yangshangchuan
信息抽取HtmlExtractor精准抽取信息采集
HtmlExtractor是一个Java实现的基于模板的网页结构化信息精准抽取组件,本身并不包含爬虫功能,但可被爬虫或其他程序调用以便更精准地对网页结构化信息进行抽取。
HtmlExtractor是为大规模分布式环境设计的,采用主从架构,主节点负责维护抽取规则,从节点向主节点请求抽取规则,当抽取规则发生变化,主节点主动通知从节点,从而能实现抽取规则变化之后的实时动态生效。
如
- java编程思想 -- 多态
百合不是茶
java多态详解
一: 向上转型和向下转型
面向对象中的转型只会发生在有继承关系的子类和父类中(接口的实现也包括在这里)。父类:人 子类:男人向上转型: Person p = new Man() ; //向上转型不需要强制类型转化向下转型: Man man =
- [自动数据处理]稳扎稳打,逐步形成自有ADP系统体系
comsci
dp
对于国内的IT行业来讲,虽然我们已经有了"两弹一星",在局部领域形成了自己独有的技术特征,并初步摆脱了国外的控制...但是前面的路还很长....
首先是我们的自动数据处理系统还无法处理很多高级工程...中等规模的拓扑分析系统也没有完成,更加复杂的
- storm 自定义 日志文件
商人shang
stormclusterlogback
Storm中的日志级级别默认为INFO,并且,日志文件是根据worker号来进行区分的,这样,同一个log文件中的信息不一定是一个业务的,这样就会有以下两个需求出现:
1. 想要进行一些调试信息的输出
2. 调试信息或者业务日志信息想要输出到一些固定的文件中
不要怕,不要烦恼,其实Storm已经提供了这样的支持,可以通过自定义logback 下的 cluster.xml 来输
- Extjs3 SpringMVC使用 @RequestBody 标签问题记录
21jhf
springMVC使用 @RequestBody(required = false) UserVO userInfo
传递json对象数据,往往会出现http 415,400,500等错误,总结一下需要使用ajax提交json数据才行,ajax提交使用proxy,参数为jsonData,不能为params;另外,需要设置Content-type属性为json,代码如下:
(由于使用了父类aaa
- 一些排错方法
文强chu
方法
1、java.lang.IllegalStateException: Class invariant violation
at org.apache.log4j.LogManager.getLoggerRepository(LogManager.java:199)at org.apache.log4j.LogManager.getLogger(LogManager.java:228)
at o
- Swing中文件恢复我觉得很难
小桔子
swing
我那个草了!老大怎么回事,怎么做项目评估的?只会说相信你可以做的,试一下,有的是时间!
用java开发一个图文处理工具,类似word,任意位置插入、拖动、删除图片以及文本等。文本框、流程图等,数据保存数据库,其余可保存pdf格式。ok,姐姐千辛万苦,
- php 文件操作
aichenglong
PHP读取文件写入文件
1 写入文件
@$fp=fopen("$DOCUMENT_ROOT/order.txt", "ab");
if(!$fp){
echo "open file error" ;
exit;
}
$outputstring="date:"." \t tire:".$tire."
- MySQL的btree索引和hash索引的区别
AILIKES
数据结构mysql算法
Hash 索引结构的特殊性,其 检索效率非常高,索引的检索可以一次定位,不像B-Tree 索引需要从根节点到枝节点,最后才能访问到页节点这样多次的IO访问,所以 Hash 索引的查询效率要远高于 B-Tree 索引。
可能很多人又有疑问了,既然 Hash 索引的效率要比 B-Tree 高很多,为什么大家不都用 Hash 索引而还要使用 B-Tree 索引呢
- JAVA的抽象--- 接口 --实现
百合不是茶
抽象 接口 实现接口
//抽象 类 ,方法
//定义一个公共抽象的类 ,并在类中定义一个抽象的方法体
抽象的定义使用abstract
abstract class A 定义一个抽象类 例如:
//定义一个基类
public abstract class A{
//抽象类不能用来实例化,只能用来继承
//
- JS变量作用域实例
bijian1013
作用域
<script>
var scope='hello';
function a(){
console.log(scope); //undefined
var scope='world';
console.log(scope); //world
console.log(b);
- TDD实践(二)
bijian1013
javaTDD
实践题目:分解质因数
Step1:
单元测试:
package com.bijian.study.factor.test;
import java.util.Arrays;
import junit.framework.Assert;
import org.junit.Before;
import org.junit.Test;
import com.bijian.
- [MongoDB学习笔记一]MongoDB主从复制
bit1129
mongodb
MongoDB称为分布式数据库,主要原因是1.基于副本集的数据备份, 2.基于切片的数据扩容。副本集解决数据的读写性能问题,切片解决了MongoDB的数据扩容问题。
事实上,MongoDB提供了主从复制和副本复制两种备份方式,在MongoDB的主从复制和副本复制集群环境中,只有一台作为主服务器,另外一台或者多台服务器作为从服务器。 本文介绍MongoDB的主从复制模式,需要指明
- 【HBase五】Java API操作HBase
bit1129
hbase
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.HColumnDescriptor;
import org.apache.ha
- python调用zabbix api接口实时展示数据
ronin47
zabbix api接口来进行展示。经过思考之后,计划获取如下内容: 1、 获得认证密钥 2、 获取zabbix所有的主机组 3、 获取单个组下的所有主机 4、 获取某个主机下的所有监控项  
- jsp取得绝对路径
byalias
绝对路径
在JavaWeb开发中,常使用绝对路径的方式来引入JavaScript和CSS文件,这样可以避免因为目录变动导致引入文件找不到的情况,常用的做法如下:
一、使用${pageContext.request.contextPath}
代码” ${pageContext.request.contextPath}”的作用是取出部署的应用程序名,这样不管如何部署,所用路径都是正确的。
- Java定时任务调度:用ExecutorService取代Timer
bylijinnan
java
《Java并发编程实战》一书提到的用ExecutorService取代Java Timer有几个理由,我认为其中最重要的理由是:
如果TimerTask抛出未检查的异常,Timer将会产生无法预料的行为。Timer线程并不捕获异常,所以 TimerTask抛出的未检查的异常会终止timer线程。这种情况下,Timer也不会再重新恢复线程的执行了;它错误的认为整个Timer都被取消了。此时,已经被
- SQL 优化原则
chicony
sql
一、问题的提出
在应用系统开发初期,由于开发数据库数据比较少,对于查询SQL语句,复杂视图的的编写等体会不出SQL语句各种写法的性能优劣,但是如果将应用系统提交实际应用后,随着数据库中数据的增加,系统的响应速度就成为目前系统需要解决的最主要的问题之一。系统优化中一个很重要的方面就是SQL语句的优化。对于海量数据,劣质SQL语句和优质SQL语句之间的速度差别可以达到上百倍,可见对于一个系统
- java 线程弹球小游戏
CrazyMizzz
java游戏
最近java学到线程,于是做了一个线程弹球的小游戏,不过还没完善
这里是提纲
1.线程弹球游戏实现
1.实现界面需要使用哪些API类
JFrame
JPanel
JButton
FlowLayout
Graphics2D
Thread
Color
ActionListener
ActionEvent
MouseListener
Mouse
- hadoop jps出现process information unavailable提示解决办法
daizj
hadoopjps
hadoop jps出现process information unavailable提示解决办法
jps时出现如下信息:
3019 -- process information unavailable3053 -- process information unavailable2985 -- process information unavailable2917 --
- PHP图片水印缩放类实现
dcj3sjt126com
PHP
<?php
class Image{
private $path;
function __construct($path='./'){
$this->path=rtrim($path,'/').'/';
}
//水印函数,参数:背景图,水印图,位置,前缀,TMD透明度
public function water($b,$l,$pos
- IOS控件学习:UILabel常用属性与用法
dcj3sjt126com
iosUILabel
参考网站:
http://shijue.me/show_text/521c396a8ddf876566000007
http://www.tuicool.com/articles/zquENb
http://blog.csdn.net/a451493485/article/details/9454695
http://wiki.eoe.cn/page/iOS_pptl_artile_281
- 完全手动建立maven骨架
eksliang
javaeclipseWeb
建一个 JAVA 项目 :
mvn archetype:create
-DgroupId=com.demo
-DartifactId=App
[-Dversion=0.0.1-SNAPSHOT]
[-Dpackaging=jar]
建一个 web 项目 :
mvn archetype:create
-DgroupId=com.demo
-DartifactId=web-a
- 配置清单
gengzg
配置
1、修改grub启动的内核版本
vi /boot/grub/grub.conf
将default 0改为1
拷贝mt7601Usta.ko到/lib文件夹
拷贝RT2870STA.dat到 /etc/Wireless/RT2870STA/文件夹
拷贝wifiscan到bin文件夹,chmod 775 /bin/wifiscan
拷贝wifiget.sh到bin文件夹,chm
- Windows端口被占用处理方法
huqiji
windows
以下文章主要以80端口号为例,如果想知道其他的端口号也可以使用该方法..........................1、在windows下如何查看80端口占用情况?是被哪个进程占用?如何终止等. 这里主要是用到windows下的DOS工具,点击"开始"--"运行",输入&
- 开源ckplayer 网页播放器, 跨平台(html5, mobile),flv, f4v, mp4, rtmp协议. webm, ogg, m3u8 !
天梯梦
mobile
CKplayer,其全称为超酷flv播放器,它是一款用于网页上播放视频的软件,支持的格式有:http协议上的flv,f4v,mp4格式,同时支持rtmp视频流格 式播放,此播放器的特点在于用户可以自己定义播放器的风格,诸如播放/暂停按钮,静音按钮,全屏按钮都是以外部图片接口形式调用,用户根据自己的需要制作 出播放器风格所需要使用的各个按钮图片然后替换掉原始风格里相应的图片就可以制作出自己的风格了,
- 简单工厂设计模式
hm4123660
java工厂设计模式简单工厂模式
简单工厂模式(Simple Factory Pattern)属于类的创新型模式,又叫静态工厂方法模式。是通过专门定义一个类来负责创建其他类的实例,被创建的实例通常都具有共同的父类。简单工厂模式是由一个工厂对象决定创建出哪一种产品类的实例。简单工厂模式是工厂模式家族中最简单实用的模式,可以理解为是不同工厂模式的一个特殊实现。
- maven笔记
zhb8015
maven
跳过测试阶段:
mvn package -DskipTests
临时性跳过测试代码的编译:
mvn package -Dmaven.test.skip=true
maven.test.skip同时控制maven-compiler-plugin和maven-surefire-plugin两个插件的行为,即跳过编译,又跳过测试。
指定测试类
mvn test
- 非mapreduce生成Hfile,然后导入hbase当中
Stark_Summer
maphbasereduceHfilepath实例
最近一个群友的boss让研究hbase,让hbase的入库速度达到5w+/s,这可愁死了,4台个人电脑组成的集群,多线程入库调了好久,速度也才1w左右,都没有达到理想的那种速度,然后就想到了这种方式,但是网上多是用mapreduce来实现入库,而现在的需求是实时入库,不生成文件了,所以就只能自己用代码实现了,但是网上查了很多资料都没有查到,最后在一个网友的指引下,看了源码,最后找到了生成Hfile
- jsp web tomcat 编码问题
王新春
tomcatjsppageEncode
今天配置jsp项目在tomcat上,windows上正常,而linux上显示乱码,最后定位原因为tomcat 的server.xml 文件的配置,添加 URIEncoding 属性:
<Connector port="8080" protocol="HTTP/1.1"
connectionTi