给出DNCNN的代码:https://github.com/cszn/DnCNN/tree/master/TrainingCodes/dncnn_pytorch(里面有给出pytorch实现)
代码的框架基于xintao前辈的框架(https://github.com/xinntao/BasicSR)
先修改代码框架,进入将train_sr.json改为train_ne.json
给出该文件的setting:
{
"name": "noise_estimation_gt" //"001_RRDB_PSNR_x4_DIV2K" // please remove "debug_" during training or tensorboard wounld not work
,
"use_tb_logger": true,
"model": "sr",
"crop_scale": 0
, "scale": 1//it must be 1
, "gpu_ids": [5]
, "datasets": {
"train": {
"name": "DIV2K800",
"mode": "LRHR" //it must be this, and the detail would be shown in LRHR_dataset.py
, "noise_get": true///
, "dataroot_HR": "/home/guanwp/BasicSR_datasets/DIV2K800_sub"///must be sub
, "dataroot_LR": "/home/guanwp/BasicSR_datasets/DIV2K800_sub_noise"
, "subset_file": null
, "use_shuffle": true
, "n_workers": 8
, "batch_size": 24//how many samples in each iters
, "HR_size": 128 // 128 | 192
, "use_flip": false//true//
, "use_rot": false//true
}
, "val": {
"name": "val_set5",
"mode": "LRHR",
"dataroot_HR": "/home/guanwp/BasicSR_datasets/val_set5/Set5",
"dataroot_LR": "/home/guanwp/BasicSR_datasets/val_set5/Set5_noise"
, "noise_get": true///this is important
}
}
, "path": {
"root": "/home/guanwp/BasicSR-master/",
"pretrain_model_G": null
,"experiments_root": "/home/guanwp/BasicSR-master/experiments/",
"models": "/home/guanwp/BasicSR-master/experiments/noise_estimation_gt/models",
"log": "/home/guanwp/BasicSR-master/experiments/noise_estimation_gt",
"val_images": "/home/guanwp/BasicSR-master/experiments/noise_estimation_gt/val_images"
}
, "network_G": {
"which_model_G": "noise_estimation"//"espcn"//"srresnet"//"sr_resnet"//"fsrcnn"//"sr_resnet" // RRDB_net | sr_resnet
, "norm_type": null
, "mode": "CNA"
, "nf": 64//56//64
, "nb": 23
, "in_nc": 3
, "out_nc": 3
, "gc": 32
, "group": 1
}
, "train": {
"lr_G": 1e-4//1e-3//2e-4
, "lr_scheme": "MultiStepLR"
, "lr_steps": [200000, 300000, 400000,500000]
, "lr_gamma": 0.5
, "pixel_criterion": "l2"//"l2_tv"//"l1"//'l2'//huber//Cross //should be MSE LOSS
, "pixel_weight": 1.0
, "val_freq": 1e3
, "manual_seed": 0
, "niter": 6e5//2e6//1e6
}
, "logger": {
"print_freq": 200
, "save_checkpoint_freq": 1e3
}
}
其中关于TVloss(对图像的梯度求平方和)
在GitHub上也有TVLoss的实现https://github.com/jxgu1016/Total_Variation_Loss.pytorch/blob/master/TVLoss.py
给出TVloss的代码
#########################################
#TV loss(total variation regularizer)
class TVLoss(nn.Module):
def __init__(self,TVLoss_weight=1):
super(TVLoss,self).__init__()
self.TVLoss_weight = TVLoss_weight
def forward(self,x):
batch_size = x.size()[0]
h_x = x.size()[2]
w_x = x.size()[3]
count_h = self._tensor_size(x[:,:,1:,:])
count_w = self._tensor_size(x[:,:,:,1:])
h_tv = torch.pow((x[:,:,1:,:]-x[:,:,:h_x-1,:]),2).sum()
w_tv = torch.pow((x[:,:,:,1:]-x[:,:,:,:w_x-1]),2).sum()
return self.TVLoss_weight*2*(h_tv/count_h+w_tv/count_w)/batch_size
def _tensor_size(self,t):
return t.size()[1]*t.size()[2]*t.size()[3]
##########################################
注意,使用TVLOSS前应该先对其进行初始化,如
The total variation (TV) loss encourages spatial smoothness in the generated image.(总变差(TV)损失促进了生成的图像中的空间平滑性。)
Rubin等人在1990年左右观察到受噪声污染的图像的TV比无噪图像的总变分明显的大。 那么最小化TV理论上就可以最小化噪声。图片中相邻像素值的差异可以通过降低TV loss来一定程度上解决。比如降噪,对抗checkerboard等等。
wiki上关于TVLoss的描述https://en.wikipedia.org/wiki/Total_variation
在图像复原过程中,图像上的一点点噪声可能就会对复原的结果产生非常大的影响,因为很多复原算法都会放大噪声。这时候我们就需要在最优化问题的模型中添加一些正则项来保持图像的光滑性,TV是常用的一种正则项(https://www.zhihu.com/question/47162419/answer/251800162)。
另外参考的TVloss如下
# TV loss
class TVLoss(nn.Module):
def __init__(self):
super(TVLoss, self).__init__()
def __call__(self, input):
im_size = input.size()
batchSize = input.size()[0]
x_tv = torch.pow((input[:, :, 1:, :] - input[:, :, :im_size[2] - 1, :]), 2).sum()
y_tv = torch.pow((input[:, :, :, 1:] - input[:, :, :, :im_size[3] - 1]), 2).sum()
tv_x_size = self._tensor_size(input[:, :, 1:, :])
tv_y_size = self._tensor_size(input[:, :, :, 1:])
loss_tv = (x_tv / tv_x_size + y_tv / tv_y_size) / batchSize
return loss_tv
def _tensor_size(self, t):
return t.size()[1] * t.size()[2] * t.size()[3]
TVLOSS一般是用于fine-tune,用于tradeoff
heteroscedastic Gaussian(异方差高斯)
参考论文《Benchmarking Denoising Algorithms with Real Photographs》有:(改论文的代码https://github.com/lbasek/image-denoising-benchmark)
一般添加噪声都是采用adding noise to a latent noise-free image,但此处提到:
The main idea there is to model the noise distribution as a heteroscedastic Gaussian, whose variance is intensity-dependent.
代码是从(https://github.com/GuoShi28/CBDNet)中修改的
function Test_Realistic_Noise_Model()
%%% Test Code for realistic noise model
addpath('./utils'); %%%%%%%%%%%%%this is the function
%% load CRF parameters, the pipeline of the camera, is should be turn off
load('201_CRF_data.mat');
load('dorfCurvesInv.mat');
I_gl = I;
B_gl = B;
I_inv_gl = invI;
B_inv_gl = invB;
mod_scale = 1;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% set parameters
% comment the unnecessary line
input_folder = '/home/guanwp/BasicSR_datasets/DIV2K_train_HR';
% save_mod_folder = '';
save_LR_folder = '/home/guanwp/BasicSR_datasets/DIV2K_train_noise';
% save_bic_folder = '';
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if exist('save_mod_folder', 'var')
if exist(save_mod_folder, 'dir')
disp(['It will cover ', save_mod_folder]);
else
mkdir(save_mod_folder);
end
end
if exist('save_LR_folder', 'var')
if exist(save_LR_folder, 'dir')
disp(['It will cover ', save_LR_folder]);
else
mkdir(save_LR_folder);
end
end
if exist('save_bic_folder', 'var')
if exist(save_bic_folder, 'dir')
disp(['It will cover ', save_bic_folder]);
else
mkdir(save_bic_folder);
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
idx = 0;
filepaths = dir(fullfile(input_folder,'*.*'));
for i = 1 : length(filepaths)
[paths,imname,ext] = fileparts(filepaths(i).name);
if isempty(imname)
disp('Ignore . folder.');
elseif strcmp(imname, '.')
disp('Ignore .. folder.');
else
idx = idx + 1;
str_rlt = sprintf('%d\t%s.\n', idx, imname);
fprintf(str_rlt);
% read image
img = imread(fullfile(input_folder, [imname, ext]));
img = im2double(img);
% modcrop
%%%img = modcrop(img, mod_scale);
if exist('save_mod_folder', 'var')
imwrite(img, fullfile(save_mod_folder, [imname, '.png']));
end
% LR%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%add noise
%%%sigma_s = [0.08 0.08 0.08]; % recommend 0~0.16
%%%%sigma_c = [0.03 0.03 0.03]; % recommend 0~0.06
%%%%%%%%%%random
channel = size(img,3);
sigma_s = 0.16*rand(1,channel,'single'); % original 0.16
sigma_c = 0.06*rand(1,channel,'single'); % original 0.06
%%%used the default value
CRF_index = 5; % 1~201
pattern = 5; % 1: 'gbrg', 2: 'grbg', 3: 'bggr', 4: 'rggb', 5: no mosaic
im_LR = AddNoiseMosai(img,I_gl,B_gl,I_inv_gl,B_inv_gl, sigma_s,sigma_c, CRF_index, pattern);
%%%%%%%%%%%%%%%%%%im_LR = AddNoiseMosai(img,I_gl,B_gl,I_inv_gl,B_inv_gl, CRF_index, pattern);
%% JPEG compression
%%% If JPEG compression is not considered, just commented out the following
%%% Code or just set "quality" equal to 100
qality = 100; % image quality, recommend 60~100
if exist('save_LR_folder', 'var')
%%%%%%%%%%%%%%%%%%imwrite(im_LR, fullfile(save_LR_folder, [imname, '_bicLRx4.png']),'Quality', qality);
imwrite(im_LR, fullfile(save_LR_folder, [imname, '_bicLRx4.png']));
end
% Bicubic
if exist('save_bic_folder', 'var')
im_B = imresize(im_LR, up_scale, 'bicubic');
imwrite(im_B, fullfile(save_bic_folder, [imname, '_bicx4.png']));
end
end
end
end
%% modcrop
function img = modcrop(img, modulo)
if size(img,3) == 1
sz = size(img);
sz = sz - mod(sz, modulo);
img = img(1:sz(1), 1:sz(2));
else
tmpsz = size(img);
sz = tmpsz(1:2);
sz = sz - mod(sz, modulo);
img = img(1:sz(1), 1:sz(2),:);
end
end
%//
% AddNoiseMosai
%function: add realistic noise
% If this Code is helpful to you, please Cite: https://arxiv.org/abs/1807.04686
%%% realistic noise model:
%%% I = M^{-1}(M(f(L + n_s + n_c) + n_q))
% n_s: shot noise, depend on L, E[n_s]= 0, var[n_s] = L*sigma_s
% in [1], n_s is a Possion Shot
% in [2], n_s is GMM, sigma_s: 0~0.16
% we choose [2] here
% n_c: other type of noise, i.e. read noise, dark current
% in [2], E[n_c] = 0, var[n_c] = sigma_c, sigma_c: 0.01~0.06
% n_q: ignore in [2]
%//
%inpus:
%-------x: image data, double or single datatype, [0,1]
%-------I, B: CRF parameters provided by [3]
%-------Iinv, Binv: inverse CRF parameters, created by "inverseCRF" for
% faster computation
%**(optional): if not defined by user,the following parameters are set
% ramdomly
%-------sigma_s: signal-dependent noise level, [0, 0.16]
%-------sigma_c: sigma_independent noise level, [0, 0.06]
%-------crf_index: CRF index, [1, 201]
%-------pattern: 1: 'gbrg', 2: 'grbg', 3: 'bggr', 4: 'rggb', 5: no mosaic
%
%output:
%-------y: noisy image
%//
% reference:
% [1] G.E. Healey and R. Kondepudy, Radiometric CCD Camera Calibration and Noise Estimation,
% IEEE Trans. Pattern Analysis and Machine Intelligence
% [2] Liu, Ce et al. Automatic Estimation and Removal of Noise from a Single Image.
% IEEE Transactions on Pattern Analysis and Machine Intelligence 30 (2008): 299-314.
% [3] Grossberg, M.D., Nayar, S.K.: Modeling the space of camera response functions.
% IEEE Transactions on Pattern Analysis and Machine Intelligence 26 (2004)
%
function [y] = AddNoiseMosai(x,I,B,Iinv,Binv,sigma_s,sigma_c,crf_index, pattern)
% default value
channel = size(x,3);
rng('default')
if nargin < 6
rng('shuffle');
sigma_s = 0.16*rand(1,channel,'single'); % original 0.16
rng('shuffle');
sigma_c = 0.06*rand(1,channel,'single'); % original 0.06
rng('shuffle');
rand_index = randperm(201);
crf_index = rand_index(1);
rng('shuffle');
pattern = randperm(5);
end
temp_x = x;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% x -> L
%%%%%%temp_x = ICRF_Map(temp_x,Iinv(crf_index,:),Binv(crf_index,:));
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%noise
noise_s_map = bsxfun(@times,permute(sigma_s,[3 1 2]),temp_x);
noise_s = randn(size(temp_x),'single').* noise_s_map;
temp_x = temp_x + noise_s;
noise_c_map = repmat(permute(sigma_c,[3 1 2]),[size(x,1),size(x,2)]);
noise_c = noise_c_map .* randn(size(temp_x),'single');
temp_x = temp_x + noise_c;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% add Mosai
if pattern(1) == 1
[B_b, ~, ~] = mosaic_bayer(temp_x, 'gbrg', 0);
elseif pattern(1) == 2
[B_b, ~, ~] = mosaic_bayer(temp_x, 'grbg', 0);
elseif pattern(1) == 3
[B_b, ~, ~] = mosaic_bayer(temp_x, 'bggr', 0);
elseif pattern(1) == 4
[B_b, ~, ~] = mosaic_bayer(temp_x, 'rggb', 0);
else
B_b = temp_x;
end
temp_x = single(B_b);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% DeMosai
if pattern(1) == 1
Ba = uint16(temp_x*(2^16));
lin_rgb = double(demosaic(Ba,'gbrg'))/2^16;
elseif pattern(1) == 2
Ba = uint16(temp_x*(2^16));
lin_rgb = double(demosaic(Ba,'grbg'))/2^16;
elseif pattern(1) == 3
Ba = uint16(temp_x*(2^16));
lin_rgb = double(demosaic(Ba,'bggr'))/2^16;
elseif pattern(1) == 4
Ba = uint16(temp_x*(2^16));
lin_rgb = double(demosaic(Ba,'rggb'))/2^16;
else
lin_rgb = temp_x;
end
temp_x= single(lin_rgb);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% L -> x
%%%%%%%%%%%%%temp_x = CRF_Map(temp_x,I(crf_index,:),B(crf_index,:));
y = temp_x;
end
保存residual,直接处理成residual而不在代码里面处理
function Test_Realistic_Noise_Model()
%%% Test Code for realistic noise model
addpath('./utils'); %%%%%%%%%%%%%this is the function
%% load CRF parameters, the pipeline of the camera, is should be turn off
load('201_CRF_data.mat');
load('dorfCurvesInv.mat');
I_gl = I;
B_gl = B;
I_inv_gl = invI;
B_inv_gl = invB;
mod_scale = 1;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% set parameters
% comment the unnecessary line
input_folder = '/home/guanwp/BasicSR_datasets/val_set14/Set14';
%%%%%%%%%%%%%%%%%%%%% save_mod_folder = '';
save_LR_folder = '/home/guanwp/BasicSR_datasets/val_set14/Set14_noise';
%%%%%%%%%%%%%5% save_bic_folder = '';
save_residual_folder='/home/guanwp/BasicSR_datasets/val_set14/Set14_residual'%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if exist('save_mod_folder', 'var')
if exist(save_mod_folder, 'dir')
disp(['It will cover ', save_mod_folder]);
else
mkdir(save_mod_folder);
end
end
if exist('save_LR_folder', 'var')
if exist(save_LR_folder, 'dir')
disp(['It will cover ', save_LR_folder]);
else
mkdir(save_LR_folder);
end
end
if exist('save_bic_folder', 'var')
if exist(save_bic_folder, 'dir')
disp(['It will cover ', save_bic_folder]);
else
mkdir(save_bic_folder);
end
end
if exist('save_residual_folder', 'var')
if exist(save_residual_folder, 'dir')
disp(['It will cover ', save_residual_folder]);
else
mkdir(save_residual_folder);
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
idx = 0;
filepaths = dir(fullfile(input_folder,'*.*'));
for i = 1 : length(filepaths)
[paths,imname,ext] = fileparts(filepaths(i).name);
if isempty(imname)
disp('Ignore . folder.');
elseif strcmp(imname, '.')
disp('Ignore .. folder.');
else
idx = idx + 1;
str_rlt = sprintf('%d\t%s.\n', idx, imname);
fprintf(str_rlt);
% read image
img = imread(fullfile(input_folder, [imname, ext]));
img = im2double(img);
% modcrop
%%%img = modcrop(img, mod_scale);
if exist('save_mod_folder', 'var')
imwrite(img, fullfile(save_mod_folder, [imname, '.png']));
end
% LR%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%add noise
%%%sigma_s = [0.08 0.08 0.08]; % recommend 0~0.16
%%%%sigma_c = [0.03 0.03 0.03]; % recommend 0~0.06
%%%%%%%%%%random
channel = size(img,3);
sigma_s = 0.16*rand(1,channel,'single'); % original 0.16
sigma_c = 0.06*rand(1,channel,'single'); % original 0.06
%%%used the default value
CRF_index = 5; % 1~201
pattern = 5; % 1: 'gbrg', 2: 'grbg', 3: 'bggr', 4: 'rggb', 5: no mosaic
im_LR = AddNoiseMosai(img,I_gl,B_gl,I_inv_gl,B_inv_gl, sigma_s,sigma_c, CRF_index, pattern);
im_residual=im_LR-img;
%%%%%%%%%%%%%%%%%%im_LR = AddNoiseMosai(img,I_gl,B_gl,I_inv_gl,B_inv_gl, CRF_index, pattern);
%% JPEG compression
%%% If JPEG compression is not considered, just commented out the following
%%% Code or just set "quality" equal to 100
qality = 100; % image quality, recommend 60~100
if exist('save_LR_folder', 'var')
%%%%%%%%%%%%%%%%%%imwrite(im_LR, fullfile(save_LR_folder, [imname, '_bicLRx4.png']),'Quality', qality);
imwrite(im_LR, fullfile(save_LR_folder, [imname, '_bicLRx4.png']));
end
% Bicubic
if exist('save_bic_folder', 'var')
im_B = imresize(im_LR, up_scale, 'bicubic');
imwrite(im_B, fullfile(save_bic_folder, [imname, '_bicx4.png']));
end
if exist('save_residual_folder', 'var')
%%%%%%%%%%%%%%%%%%imwrite(im_LR, fullfile(save_residual_folder, [imname, '_bicLRx4.png']),'Quality', qality);
imwrite(im_residual, fullfile(save_residual_folder, [imname, '_bicLRx4.png']));
end
end
end
end
%% modcrop
function img = modcrop(img, modulo)
if size(img,3) == 1
sz = size(img);
sz = sz - mod(sz, modulo);
img = img(1:sz(1), 1:sz(2));
else
tmpsz = size(img);
sz = tmpsz(1:2);
sz = sz - mod(sz, modulo);
img = img(1:sz(1), 1:sz(2),:);
end
end
结果
进入m文件所在目录后,运行
$ matlab -nodesktop -nosplash -r matlabfile
加噪后的效果
高清的图片效果不明显,给张set5的图
data处理(打开文件 LRHR_dataset.py给出修改代码如下:)
import os.path
import random
import numpy as np
import cv2
import torch
import torch.utils.data as data
import data.util as util
class LRHRDataset(data.Dataset):
'''
Read LR and HR image pairs.
If only HR image is provided, generate LR image on-the-fly.
The pair is ensured by 'sorted' function, so please check the name convention.
'''
def __init__(self, opt):
super(LRHRDataset, self).__init__()
self.opt = opt
self.paths_LR = None
self.paths_HR = None
self.LR_env = None # environment for lmdb
self.HR_env = None
# read image list from subset list txt
if opt['subset_file'] is not None and opt['phase'] == 'train':
with open(opt['subset_file']) as f:
self.paths_HR = sorted([os.path.join(opt['dataroot_HR'], line.rstrip('\n')) \
for line in f])
if opt['dataroot_LR'] is not None:
raise NotImplementedError('Now subset only supports generating LR on-the-fly.')
else: # read image list from lmdb or image files
self.HR_env, self.paths_HR = util.get_image_paths(opt['data_type'], opt['dataroot_HR'])
self.LR_env, self.paths_LR = util.get_image_paths(opt['data_type'], opt['dataroot_LR'])
assert self.paths_HR, 'Error: HR path is empty.'
if self.paths_LR and self.paths_HR:
assert len(self.paths_LR) == len(self.paths_HR), \
'HR and LR datasets have different number of images - {}, {}.'.format(\
len(self.paths_LR), len(self.paths_HR))
self.random_scale_list = [1]
def __getitem__(self, index):###Objects can be iterated
HR_path, LR_path = None, None
scale = self.opt['scale']#the upscale
HR_size = self.opt['HR_size']#the HR patch size
# get HR image
HR_path = self.paths_HR[index]
img_HR = util.read_img(self.HR_env, HR_path)###feed the image
# modcrop in the validation / test phase
if self.opt['phase'] != 'train':
img_HR = util.modcrop(img_HR, scale)
# change color space if necessary
if self.opt['color']:
img_HR = util.channel_convert(img_HR.shape[2], self.opt['color'], [img_HR])[0]
#you just should know that this is the process of training
# get LR image
if self.paths_LR:
LR_path = self.paths_LR[index]
img_LR = util.read_img(self.LR_env, LR_path)
else: # down-sampling on-the-fly
# randomly scale during training
if self.opt['phase'] == 'train':
random_scale = random.choice(self.random_scale_list)
H_s, W_s, _ = img_HR.shape
def _mod(n, random_scale, scale, thres):
rlt = int(n * random_scale)
rlt = (rlt // scale) * scale
return thres if rlt < thres else rlt
H_s = _mod(H_s, random_scale, scale, HR_size)
W_s = _mod(W_s, random_scale, scale, HR_size)
img_HR = cv2.resize(np.copy(img_HR), (W_s, H_s), interpolation=cv2.INTER_LINEAR)
# force to 3 channels
if img_HR.ndim == 2:
img_HR = cv2.cvtColor(img_HR, cv2.COLOR_GRAY2BGR)
H, W, _ = img_HR.shape
# using matlab imresize
img_LR = util.imresize_np(img_HR, 1 / scale, True)
if img_LR.ndim == 2:
img_LR = np.expand_dims(img_LR, axis=2)
if self.opt['phase'] == 'train':
# if the image size is too small
H, W, _ = img_HR.shape
if H < HR_size or W < HR_size:
img_HR = cv2.resize(
np.copy(img_HR), (HR_size, HR_size), interpolation=cv2.INTER_LINEAR)
# using matlab imresize
img_LR = util.imresize_np(img_HR, 1 / scale, True)
if img_LR.ndim == 2:
img_LR = np.expand_dims(img_LR, axis=2)
H, W, C = img_LR.shape
LR_size = HR_size // scale###this step make sure the size of the LR is match the size of HR
############################this is the augmentation#####################################
# randomly crop
rnd_h = random.randint(0, max(0, H - LR_size))
rnd_w = random.randint(0, max(0, W - LR_size))
img_LR = img_LR[rnd_h:rnd_h + LR_size, rnd_w:rnd_w + LR_size, :]
rnd_h_HR, rnd_w_HR = int(rnd_h * scale), int(rnd_w * scale)
img_HR = img_HR[rnd_h_HR:rnd_h_HR + HR_size, rnd_w_HR:rnd_w_HR + HR_size, :]
# augmentation - flip, rotate
img_LR, img_HR = util.augment([img_LR, img_HR], self.opt['use_flip'], \
self.opt['use_rot'])
#########################################################################################
#######################################################################################################################################
#the residual as the target
#if self.opt['noise_get']:
#img_HR=img_LR-img_HR##########the noise level map as the target
#############################################################################################################################################
# change color space if necessary
if self.opt['color']:
img_LR = util.channel_convert(C, self.opt['color'], [img_LR])[0]
# BGR to RGB, HWC to CHW, numpy to tensor
if img_HR.shape[2] == 3:
img_HR = img_HR[:, :, [2, 1, 0]]
img_LR = img_LR[:, :, [2, 1, 0]]
img_HR = torch.from_numpy(np.ascontiguousarray(np.transpose(img_HR, (2, 0, 1)))).float()
img_LR = torch.from_numpy(np.ascontiguousarray(np.transpose(img_LR, (2, 0, 1)))).float()
if LR_path is None:
LR_path = HR_path
return {'LR': img_LR, 'HR': img_HR, 'LR_path': LR_path, 'HR_path': HR_path}
def __len__(self):
return len(self.paths_HR)
SR_model
import os
from collections import OrderedDict
import torch
import torch.nn as nn
from torch.optim import lr_scheduler
import models.networks as networks#you should read the network
from .base_model import BaseModel#base_model.py just like the base class
from models.modules.loss import TVLoss
class SRModel(BaseModel):
def __init__(self, opt):
super(SRModel, self).__init__(opt)
train_opt = opt['train']
# define network and load pretrained models
self.netG = networks.define_G(opt).to(self.device)#you should read the network
self.load()
###############################################
self.l_pix_tv=0
if self.is_train:
self.netG.train()
# loss
loss_type = train_opt['pixel_criterion']
if loss_type == 'l1':
self.cri_pix = nn.L1Loss().to(self.device)
elif loss_type == 'l2':
self.cri_pix = nn.MSELoss().to(self.device)
#self.l_pix_tv=0##############
#self.tvloss=TVLoss().to(self.device)###################
#######################################################################
elif loss_type=='huber':
self.cri_pix = nn.SmoothL1Loss().to(self.device)
elif loss_type=='Cross':
self.cri_pix = nn.CrossEntropyLoss().to(self.device)
elif loss_type=='l2_tv':
self.cri_pix = nn.MSELoss().to(self.device)
#self.l_pix_tv=1e-5
#self.tvloss=TVLoss().to(self.device)
####################################################################3###
else:
raise NotImplementedError('Loss type [{:s}] is not recognized.'.format(loss_type))
self.l_pix_w = train_opt['pixel_weight']
# optimizers
wd_G = train_opt['weight_decay_G'] if train_opt['weight_decay_G'] else 0
optim_params = []
for k, v in self.netG.named_parameters(): # can optimize for a part of the model
if v.requires_grad:
optim_params.append(v)
else:
print('WARNING: params [{:s}] will not optimize.'.format(k))
self.optimizer_G = torch.optim.Adam(
optim_params, lr=train_opt['lr_G'], weight_decay=wd_G)
self.optimizers.append(self.optimizer_G)
# schedulers
if train_opt['lr_scheme'] == 'MultiStepLR':
for optimizer in self.optimizers:
self.schedulers.append(lr_scheduler.MultiStepLR(optimizer, \
train_opt['lr_steps'], train_opt['lr_gamma']))
else:
raise NotImplementedError('MultiStepLR learning rate scheme is enough.')
self.log_dict = OrderedDict()
print('---------- Model initialized ------------------')
self.print_network()
print('-----------------------------------------------')
def feed_data(self, data, need_HR=True):#feed the data,
self.var_L = data['LR'].to(self.device) # LR
if need_HR:
self.real_H = data['HR'].to(self.device) # HR
def optimize_parameters(self, step):
self.optimizer_G.zero_grad()
self.fake_H = self.netG(self.var_L)
l_pix = self.l_pix_w * self.cri_pix(self.fake_H, self.real_H)
################################################################################################################################
#####read my CSDN for the TVLoss
#l_pix=l_pix+self.l_pix_tv * self.tvloss(self.fake_H)#####################################
##########################################################
l_pix.backward()
self.optimizer_G.step()
# set log
self.log_dict['l_pix'] = l_pix.item()
def test(self):
self.netG.eval()
with torch.no_grad():
self.fake_H = self.netG(self.var_L)
self.netG.train()
def test_x8(self):
# from https://github.com/thstkdgus35/EDSR-PyTorch
self.netG.eval()
for k, v in self.netG.named_parameters():
v.requires_grad = False
def _transform(v, op):
# if self.precision != 'single': v = v.float()
v2np = v.data.cpu().numpy()
if op == 'v':
tfnp = v2np[:, :, :, ::-1].copy()
elif op == 'h':
tfnp = v2np[:, :, ::-1, :].copy()
elif op == 't':
tfnp = v2np.transpose((0, 1, 3, 2)).copy()
ret = torch.Tensor(tfnp).to(self.device)
# if self.precision == 'half': ret = ret.half()
return ret
lr_list = [self.var_L]
for tf in 'v', 'h', 't':
lr_list.extend([_transform(t, tf) for t in lr_list])
sr_list = [self.netG(aug) for aug in lr_list]
for i in range(len(sr_list)):
if i > 3:
sr_list[i] = _transform(sr_list[i], 't')
if i % 4 > 1:
sr_list[i] = _transform(sr_list[i], 'h')
if (i % 4) % 2 == 1:
sr_list[i] = _transform(sr_list[i], 'v')
output_cat = torch.cat(sr_list, dim=0)
self.fake_H = output_cat.mean(dim=0, keepdim=True)
for k, v in self.netG.named_parameters():
v.requires_grad = True
self.netG.train()
def get_current_log(self):
return self.log_dict
def get_current_visuals(self, need_HR=True):
out_dict = OrderedDict()
out_dict['LR'] = self.var_L.detach()[0].float().cpu()
out_dict['SR'] = self.fake_H.detach()[0].float().cpu()
if need_HR:
out_dict['HR'] = self.real_H.detach()[0].float().cpu()
return out_dict
def print_network(self):
s, n = self.get_network_description(self.netG)
print('Number of parameters in G: {:,d}'.format(n))
if self.is_train:
message = '-------------- Generator --------------\n' + s + '\n'
network_path = os.path.join(self.save_dir, '../', 'network.txt')
with open(network_path, 'w') as f:
f.write(message)
def load(self):
load_path_G = self.opt['path']['pretrain_model_G']
if load_path_G is not None:
print('loading model for G [{:s}] ...'.format(load_path_G))
self.load_network(load_path_G, self.netG)
def save(self, iter_label):
self.save_network(self.save_dir, self.netG, 'G', iter_label)
增加网络的接口放于networks.py
# Generator
def define_G(opt):
gpu_ids = opt['gpu_ids']
opt_net = opt['network_G']
which_model = opt_net['which_model_G']#hear decide which model, and thia para is in .json. if you add a new model, this part must be modified
if which_model == 'sr_resnet': # SRResNet
netG = arch.SRResNet(in_nc=opt_net['in_nc'], out_nc=opt_net['out_nc'], nf=opt_net['nf'], \
nb=opt_net['nb'], upscale=opt_net['scale'], norm_type=opt_net['norm_type'], \
act_type='relu', mode=opt_net['mode'], upsample_mode='pixelshuffle')
#############################################################################################################
elif which_model=='fsrcnn':#FSRCNN
netG=arch.FSRCNN(in_nc=opt_net['in_nc'], out_nc=opt_net['out_nc'], nf=opt_net['nf'], \
nb=opt_net['nb'], upscale=opt_net['scale'], norm_type=opt_net['norm_type'], \
act_type='relu', mode=opt_net['mode'], upsample_mode='pixelshuffle')
#############################################################################################################
#############################################################################################################
elif which_model=='espcn':#ESPCN
netG=arch.ESPCN(in_nc=opt_net['in_nc'], out_nc=opt_net['out_nc'], nf=opt_net['nf'], \
nb=opt_net['nb'], upscale=opt_net['scale'], norm_type=opt_net['norm_type'], \
act_type='relu', mode=opt_net['mode'], upsample_mode='pixelshuffle')
#############################################################################################################
#############################################################################################################
elif which_model=='srresnet':#SRResNet, the Original version
netG=arch.OSRRESNET(in_nc=opt_net['in_nc'], out_nc=opt_net['out_nc'], nf=opt_net['nf'], \
nb=opt_net['nb'], upscale=opt_net['scale'], norm_type=opt_net['norm_type'], \
act_type='relu', mode=opt_net['mode'], upsample_mode='pixelshuffle')
#############################################################################################################
#############################################################################################################
elif which_model=='noise_estimation':#SRResNet, the Original version
netG=arch.NENET(in_nc=opt_net['in_nc'], out_nc=opt_net['out_nc'], nf=opt_net['nf'], \
nb=opt_net['nb'], upscale=opt_net['scale'], norm_type=opt_net['norm_type'], \
act_type='relu', mode=opt_net['mode'], upsample_mode='pixelshuffle')
#############################################################################################################
elif which_model == 'sft_arch': # SFT-GAN
netG = sft_arch.SFT_Net()##the SFTNET
elif which_model == 'RRDB_net': # RRDB,this is ESRGAN
netG = arch.RRDBNet(in_nc=opt_net['in_nc'], out_nc=opt_net['out_nc'], nf=opt_net['nf'],
nb=opt_net['nb'], gc=opt_net['gc'], upscale=opt_net['scale'], norm_type=opt_net['norm_type'],
act_type='leakyrelu', mode=opt_net['mode'], upsample_mode='upconv')
else:
raise NotImplementedError('Generator model [{:s}] not recognized'.format(which_model))
if opt['is_train']:
init_weights(netG, init_type='kaiming', scale=0.1)###the weight initing. you can change this to change the method of init_weight
if gpu_ids:
assert torch.cuda.is_available()
netG = nn.DataParallel(netG)
return netG
网络结构在此处添加architecture.py
#######################################################################################################3
#define the block of the noise estimation network
class Block_of_NENET(nn.Module):
def __init__(self):
super(Block_of_NENET,self).__init__()
self.conv1=nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, stride=1, padding=1, bias=True)
self.bn1=nn.BatchNorm2d(64, affine=True)
self.relu=nn.ReLU()
def forward(self, x):
output = self.relu(self.bn1(self.conv1(x)))
return output
#noise estimation network
class NENET(nn.Module):
def __init__(self, in_nc, out_nc, nf, nb, upscale=2, norm_type='batch', act_type='relu', \
mode='NAC', res_scale=1, upsample_mode='upconv'):##play attention the upscales
super(NENET,self).__init__()
self.conv1=nn.Conv2d(in_channels=in_nc,out_channels=64,kernel_size=3,stride=1,padding=1,bias=True)
self.bn=nn.BatchNorm2d(64, affine=True)
self.relu=nn.ReLU()
self.block=self.make_layer(Block_of_NENET,15)
self.last_part= nn.Conv2d(in_channels=64, out_channels=in_nc, kernel_size=3, stride=1, padding=1, bias=True)
def make_layer(self, block, num_of_layer):
layers = []
for _ in range(num_of_layer):
layers.append(block())
return nn.Sequential(*layers)
def forward(self, x):#
out = self.conv1(x)
out=self.bn(out)
out=self.relu(out)
out = self.block(out)
out = self.last_part(out)
return out
训练
python train.py -opt options/train/train_ne.json.json
忘记做subimage了。。。。补上,然后把学习率也改一下
loss飞掉,并且网络输出是黑色的。。。。
接下来选择不用residual作为target,并修改相关setting
{
"name": "n_g" //"001_RRDB_PSNR_x4_DIV2K" // please remove "debug_" during training or tensorboard wounld not work
,
"use_tb_logger": true,
"model": "sr",
//"crop_scale": 0,
"scale": 1//it must be 1
,
"gpu_ids": [3],
"datasets": {
"train": {
"name": "DIV2K800",
"mode": "LRHR" //it must be this, and the detail would be shown in LRHR_dataset.py
//, "noise_get": true///
,
"dataroot_HR": "/home/guanwp/BasicSR_datasets/DIV2K800_sub" ///must be sub
,
"dataroot_LR": "/home/guanwp/BasicSR_datasets/DIV2K800_sub_n",
"subset_file": null,
"use_shuffle": true,
"n_workers": 8,
"batch_size": 16//32 //how many samples in each iters
,
"HR_size": 192 // 128 | 192
,
"use_flip": false //true//
,
"use_rot": false //true
},
"val": {
"name": "val_set5",
"mode": "LRHR",
"dataroot_HR": "/home/guanwp/BasicSR_datasets/val_set5/Set5",
"dataroot_LR": "/home/guanwp/BasicSR_datasets/val_set5/Set5_n"
//, "noise_get": true///this is important
}
},
"path": {
"root": "/home/guanwp/BasicSR-master/",
"pretrain_model_G": null,
"experiments_root": "/home/guanwp/BasicSR-master/experiments/",
"models": "/home/guanwp/BasicSR-master/experiments/n_g/models",
"log": "/home/guanwp/BasicSR-master/experiments/n_g",
"val_images": "/home/guanwp/BasicSR-master/experiments/n_g/val_images"
},
"network_G": {
"which_model_G": "noise_estimation" //"espcn"//"srresnet"//"sr_resnet"//"fsrcnn"//"sr_resnet" // RRDB_net | sr_resnet
,
"norm_type": null,
"mode": "CNA",
"nf": 64 //56//64
,
"nb": 23,
"in_nc": 3,
"out_nc": 3,
"gc": 32,
"group": 1
},
"train": {
"lr_G": 8e-4 //1e-3//2e-4
,
"lr_scheme": "MultiStepLR",
"lr_steps": [131000,170000,190000,210000,230000],
"lr_gamma": 0.5,
"pixel_criterion": "l2" //"l2_tv"//"l1"//'l2'//huber//Cross //should be MSE LOSS
,
"pixel_weight": 1.0,
"val_freq": 1e3,
"manual_seed": 0,
"niter": 2.6e5 //2e6//1e6
},
"logger": {
"print_freq": 200,
"save_checkpoint_freq": 1e3
}
}
python test.py -opt options/test/test_ne.json
经过代码调试后,去噪效果如下图所示:从左到右分别是ground truth、noise image、denoise image。可以看出去噪效果还算不错,但是会导致图像变得过平滑,感觉这样的话,可能加上TVLoss就会好点了。以及本博文的网络其实跟DnCNN是差不多的,应该就是多了一个BN层,所以PSNR的效果是32dB左右,也可以达到原文的效果了~
参考(https://ww2.mathworks.cn/matlabcentral/fileexchange/43224-signal-dependent-noise-level-estimation)
https://blog.csdn.net/weixin_42447651/article/details/82990941
https://blog.csdn.net/ddreaming/article/details/52176790
那么,bsxfun和repmat的作用应该是一样的?