谷歌BERT预训练源码解析(二):模型构建

目录

  • 前言
  • 源码解析
    • 模型配置参数
    • BertModel
    • word embedding
    • embedding_postprocessor
    • Transformer
    • self_attention
  • 模型应用

前言

BERT的模型主要是基于Transformer架构(论文:Attention is all you need)。它抛开了RNN等固有模式,直接用注意力机制处理Seq2Seq问题,体现了大道至简的思想。网上对此模型解析的资料有很多,但大都千篇一律。这里推荐知乎的一篇《Attention is all you need》解读,我觉得这篇把transformer介绍的非常好。
由于模型最闹心的就是维度问题,维度理清了,理解模型就很容易,所以我在源码中会注释每个操作后tensor的维度信息。
下面开始介绍BERT的模型 modeling.py是怎么建立的,我始终认为读代码和注释是理解的最快方法,所以看代码时如果官方注释有的地方看不懂。请善看中文注释维度信息

源码解析

模型配置参数

" attention_probs_dropout_prob": 0.1,         #乘法attention时,softmax后dropout概率
  "hidden_act": "gelu",         #激活函数
  "hidden_dropout_prob": 0.1,        #隐藏层dropout概率
  "hidden_size": 768,                #隐藏单元数
  "initializer_range": 0.02,          #初始化范围
  "intermediate_size": 3072,      #升维维度
  "max_position_embeddings": 512,     #一个大于seq_length的参数,用于生成position_embedding
  "num_attention_heads": 12,    #每个隐藏层中的attention head数
  "num_hidden_layers": 12,       #隐藏层数
  "type_vocab_size": 2,        #segment_ids类别 [0,1]
  "vocab_size": 30522       #词典中词数

这里的输入参数:input_ids,input_mask,token_type_ids对应上篇文章中输出的input_ids,input_mask,segment_ids

BertModel

这部分是总流程,整个modling脚本有900多行代码,所以我列个流程图一部一部走。整体流程如下。首先对input_ids和token_type_ids进行embedding操作,将embedding结果送入Transformer训练,最后得到编码结果。
在这里插入图片描述

def __init__(self,
               config,
               is_training,
               input_ids,
               input_mask=None,
               token_type_ids=None,
               use_one_hot_embeddings=True,
               scope=None):
    """Constructor for BertModel.
    Args:
      config: `BertConfig` instance.
      is_training: bool. rue for training model, false for eval model. Controls
        whether dropout will be applied.
      input_ids: int32 Tensor of shape [batch_size, seq_length].
      input_mask: (optional) int32 Tensor of shape [batch_size, seq_length].
      token_type_ids: (optional) int32 Tensor of shape [batch_size, seq_length].
      use_one_hot_embeddings: (optional) bool. Whether to use one-hot word
        embeddings or tf.embedding_lookup() for the word embeddings. On the TPU,
        it is must faster if this is True, on the CPU or GPU, it is faster if
        this is False.
      scope: (optional) variable scope. Defaults to "bert".
    Raises:
      ValueError: The config is invalid or one of the input tensor shapes
        is invalid.
    """
    config = copy.deepcopy(config)
    if not is_training:
      config.hidden_dropout_prob = 0.0
      config.attention_probs_dropout_prob = 0.0

    input_shape = get_shape_list(input_ids, expected_rank=2)
    batch_size = input_shape[0]
    seq_length = input_shape[1]

    if input_mask is None:
      input_mask = tf.ones(shape=[batch_size, seq_length], dtype=tf.int32)

    if token_type_ids is None:
      token_type_ids = tf.zeros(shape=[batch_size, seq_length], dtype=tf.int32)

    with tf.variable_scope(scope, default_name="bert"):
      with tf.variable_scope("embeddings"):
        # Perform embedding lookup on the word ids.
        
        #[batch_size,seq_length,embedding_size]    [vocab_size,embedding_size]
        (self.embedding_output, self.embedding_table) = embedding_lookup(    #word_embedding
            input_ids=input_ids,           #[batch_size,seq_length]
            vocab_size=config.vocab_size,
            embedding_size=config.hidden_size,
            initializer_range=config.initializer_range,
            word_embedding_name="word_embeddings",
            use_one_hot_embeddings=use_one_hot_embeddings)

        # Add positional embeddings and token type embeddings, then layer
        # normalize and perform dropout.
        self.embedding_output = embedding_postprocessor(       #token_embedding和position_embedding        [batch_size,seq_length,embedding_size]
            input_tensor=self.embedding_output,
            use_token_type=True,
            token_type_ids=token_type_ids,
            token_type_vocab_size=config.type_vocab_size,
            token_type_embedding_name="token_type_embeddings",
            use_position_embeddings=True,
            position_embedding_name="position_embeddings",
            initializer_range=config.initializer_range,
            max_position_embeddings=config.max_position_embeddings,
            dropout_prob=config.hidden_dropout_prob)

      with tf.variable_scope("encoder"):
        # This converts a 2D mask of shape [batch_size, seq_length] to a 3D
        # mask of shape [batch_size, seq_length, seq_length] which is used
        # for the attention scores.
        attention_mask = create_attention_mask_from_input_mask(     
            input_ids, input_mask)

        # Run the stacked transformer.
        # `sequence_output` shape = [batch_size, seq_length, hidden_size].
        self.all_encoder_layers = transformer_model(        #transformer_model  list(#[batch_size,seq_length,embedding_size])
            input_tensor=self.embedding_output,
            attention_mask=attention_mask,
            hidden_size=config.hidden_size,
            num_hidden_layers=config.num_hidden_layers,
            num_attention_heads=config.num_attention_heads,
            intermediate_size=config.intermediate_size,
            intermediate_act_fn=get_activation(config.hidden_act),
            hidden_dropout_prob=config.hidden_dropout_prob,
            attention_probs_dropout_prob=config.attention_probs_dropout_prob,
            initializer_range=config.initializer_range,
            do_return_all_layers=True)

      self.sequence_output = self.all_encoder_layers[-1]     #获取最后一层的输出
      # The "pooler" converts the encoded sequence tensor of shape
      # [batch_size, seq_length, hidden_size] to a tensor of shape
      # [batch_size, hidden_size]. This is necessary for segment-level
      # (or segment-pair-level) classification tasks where we need a fixed
      # dimensional representation of the segment.
      with tf.variable_scope("pooler"):
        # We "pool" the model by simply taking the hidden state corresponding
        # to the first token. We assume that this has been pre-trained
        first_token_tensor = tf.squeeze(self.sequence_output[:, 0:1, :], axis=1)    #取每个每个训练语料的第一个词的编码结果[CLS],它有整条训练语料的编码信息   [batch_size, hidden_size]
        self.pooled_output = tf.layers.dense(     #接一个全连接层进行输出 [batch_size, hidden_size]
            first_token_tensor,
            config.hidden_size,
            activation=tf.tanh,
            kernel_initializer=create_initializer(config.initializer_range))

word embedding

首先看word_embedding部分,它传入input_ids,运用one_hot为中介返回embedding结果

def embedding_lookup(input_ids,
                     vocab_size,
                     embedding_size=128,
                     initializer_range=0.02,
                     word_embedding_name="word_embeddings",
                     use_one_hot_embeddings=False):
  """Looks up words embeddings for id tensor.
  Args:
    input_ids: int32 Tensor of shape [batch_size, seq_length] containing word
      ids.
    vocab_size: int. Size of the embedding vocabulary.
    embedding_size: int. Width of the word embeddings.
    initializer_range: float. Embedding initialization range.
    word_embedding_name: string. Name of the embedding table.
    use_one_hot_embeddings: bool. If True, use one-hot method for word
      embeddings. If False, use `tf.nn.embedding_lookup()`. One hot is better
      for TPUs.
  Returns:
    float Tensor of shape [batch_size, seq_length, embedding_size].
  """
  # This function assumes that the input is of shape [batch_size, seq_length,
  # num_inputs].
  #
  # If the input is a 2D tensor of shape [batch_size, seq_length], we
  # reshape to [batch_size, seq_length, 1].
  if input_ids.shape.ndims == 2:
    input_ids = tf.expand_dims(input_ids, axis=[-1])                 #最低维扩维 [batch_size,seq_length,1]

  embedding_table = tf.get_variable(
      name=word_embedding_name,
      shape=[vocab_size, embedding_size],
      initializer=create_initializer(initializer_range))

  if use_one_hot_embeddings:
    flat_input_ids = tf.reshape(input_ids, [-1])      #[batch_size*seq_length]
    one_hot_input_ids = tf.one_hot(flat_input_ids, depth=vocab_size)    #[batch_size*seq_length,vocab_size]
    output = tf.matmul(one_hot_input_ids, embedding_table)              #[batch_size*seq_length,embedding_size]
  else:
    output = tf.nn.embedding_lookup(embedding_table, input_ids)

  input_shape = get_shape_list(input_ids)

  output = tf.reshape(output,
                      input_shape[0:-1] + [input_shape[-1] * embedding_size])   #[batch_size,seq_length,embedding_size]
  return (output, embedding_table)

embedding_postprocessor

再看embedding_postprocessor 它包括token_type_embeddingposition_embedding。也就是图中的Segement EmbeddingsPosition Embeddings
embedding结构
但此代码中Position Embeddings部分与之前提出的Transformer不同,此代码中Position Embeddings是训练出来的,而传统的Transformer(如下)是固定值
在这里插入图片描述

def embedding_postprocessor(input_tensor,      #[batch_size,seq_length,embedding_size]
                            use_token_type=False,
                            token_type_ids=None,             #[batch_size,seq_length]
                            token_type_vocab_size=16,
                            token_type_embedding_name="token_type_embeddings",
                            use_position_embeddings=True,
                            position_embedding_name="position_embeddings",
                            initializer_range=0.02,
                            max_position_embeddings=512,
                            dropout_prob=0.1):
  """Performs various post-processing on a word embedding tensor.
  Args:
    input_tensor: float Tensor of shape [batch_size, seq_length,
      embedding_size].
    use_token_type: bool. Whether to add embeddings for `token_type_ids`.
    token_type_ids: (optional) int32 Tensor of shape [batch_size, seq_length].
      Must be specified if `use_token_type` is True.
    token_type_vocab_size: int. The vocabulary size of `token_type_ids`.
    token_type_embedding_name: string. The name of the embedding table variable
      for token type ids.
    use_position_embeddings: bool. Whether to add position embeddings for the
      position of each token in the sequence.
    position_embedding_name: string. The name of the embedding table variable
      for positional embeddings.
    initializer_range: float. Range of the weight initialization.
    max_position_embeddings: int. Maximum sequence length that might ever be
      used with this model. This can be longer than the sequence length of
      input_tensor, but cannot be shorter.
    dropout_prob: float. Dropout probability applied to the final output tensor.
  Returns:
    float tensor with same shape as `input_tensor`.
  Raises:
    ValueError: One of the tensor shapes or input values is invalid.
  """
  input_shape = get_shape_list(input_tensor, expected_rank=3)
  batch_size = input_shape[0]
  seq_length = input_shape[1]
  width = input_shape[2]

  output = input_tensor

  if use_token_type:     #Segement Embeddings部分
    if token_type_ids is None:
      raise ValueError("`token_type_ids` must be specified if"
                       "`use_token_type` is True.")
    token_type_table = tf.get_variable(
        name=token_type_embedding_name,
        shape=[token_type_vocab_size, width],
        initializer=create_initializer(initializer_range))
    # This vocab will be small so we always do one-hot here, since it is always
    # faster for a small vocabulary.
    flat_token_type_ids = tf.reshape(token_type_ids, [-1])     #[batch_size*seq_length]
    one_hot_ids = tf.one_hot(flat_token_type_ids, depth=token_type_vocab_size)   #[batch_size*seq_length,2] token_type只有01
    token_type_embeddings = tf.matmul(one_hot_ids, token_type_table)     #[batch_size*seq_length,embedding_size]
    token_type_embeddings = tf.reshape(token_type_embeddings,
                                       [batch_size, seq_length, width])     #[batch_size, seq_length, width=embedding_size]
    output += token_type_embeddings         #[batch_size, seq_length, embedding_size]

  if use_position_embeddings:       #Position Embeddings部分
    assert_op = tf.assert_less_equal(seq_length, max_position_embeddings)  #确保seq_length<max_position_embedding
    with tf.control_dependencies([assert_op]):
      full_position_embeddings = tf.get_variable(
          name=position_embedding_name,
          shape=[max_position_embeddings, width],
          initializer=create_initializer(initializer_range))
      # Since the position embedding table is a learned variable, we create it
      # using a (long) sequence length `max_position_embeddings`. The actual
      # sequence length might be shorter than this, for faster training of
      # tasks that do not have long sequences.
      #
      # So `full_position_embeddings` is effectively an embedding table
      # for position [0, 1, 2, ..., max_position_embeddings-1], and the current
      # sequence has positions [0, 1, 2, ... seq_length-1], so we can just
      # perform a slice.
      position_embeddings = tf.slice(full_position_embeddings, [0, 0],     #[seq_length,embedding_size]
                                     [seq_length, -1])
      num_dims = len(output.shape.as_list())

      # Only the last two dimensions are relevant (`seq_length` and `width`), so
      # we broadcast among the first dimensions, which is typically just
      # the batch size.
      position_broadcast_shape = []
      for _ in range(num_dims - 2):
        position_broadcast_shape.append(1)
      position_broadcast_shape.extend([seq_length, width])      #[1,seq_length,embedding_size]
      position_embeddings = tf.reshape(position_embeddings,     #[1,seq_length,embedding_size]
                                       position_broadcast_shape)
      output += position_embeddings               #[batch_size, seq_length, embedding_size] 与#[1,seq_length,embedding_size]相加
#因为每一个batch的同一位置的position_embedding是一样的,所以相当于batch_size个position_embeddings与output相加

  output = layer_norm_and_dropout(output, dropout_prob)
  return output

Transformer

embedding之后,首先构造一个attention_mask,这个attention_mask表示的含义是将原来的input_mask的[batch_size,seq_length]扩维到[batch_size,from_seq_length,to_seq_length]。保证对于每个from_seq_length都有一个input_mask。之后将他们传入到transformer模型。
transformer整体架构如图所示
在这里插入图片描述
下面我们来看transformer_model。首先对embedding进行multi-head attention,对输入进行残差layer_norm。后传入feed forward,再进行残差layer_norm
本块代码中与原论文中不一样的点为:在进行multi-head attention后先链接了一个全连接层,再进行的残差和layer_norm。而原论文中貌似没有那个全连接层。下面是代码,关键部分我已写上注释

def transformer_model(input_tensor,
                      attention_mask=None,   #[batch_size,form_seq_length,to_seq_length]
                      hidden_size=768,
                      num_hidden_layers=12,
                      num_attention_heads=12,
                      intermediate_size=3072,
                      intermediate_act_fn=gelu,
                      hidden_dropout_prob=0.1,
                      attention_probs_dropout_prob=0.1,
                      initializer_range=0.02,
                      do_return_all_layers=False):
  """Multi-headed, multi-layer Transformer from "Attention is All You Need".
  This is almost an exact implementation of the original Transformer encoder.
  See the original paper:
  https://arxiv.org/abs/1706.03762
  Also see:
  https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/models/transformer.py
  Args:
    input_tensor: float Tensor of shape [batch_size, seq_length, hidden_size].
    attention_mask: (optional) int32 Tensor of shape [batch_size, seq_length,
      seq_length], with 1 for positions that can be attended to and 0 in
      positions that should not be.
    hidden_size: int. Hidden size of the Transformer.
    num_hidden_layers: int. Number of layers (blocks) in the Transformer.
    num_attention_heads: int. Number of attention heads in the Transformer.
    intermediate_size: int. The size of the "intermediate" (a.k.a., feed
      forward) layer.
    intermediate_act_fn: function. The non-linear activation function to apply
      to the output of the intermediate/feed-forward layer.
    hidden_dropout_prob: float. Dropout probability for the hidden layers.
    attention_probs_dropout_prob: float. Dropout probability of the attention
      probabilities.
    initializer_range: float. Range of the initializer (stddev of truncated
      normal).
    do_return_all_layers: Whether to also return all layers or just the final
      layer.
  Returns:
    float Tensor of shape [batch_size, seq_length, hidden_size], the final
    hidden layer of the Transformer.
  Raises:
    ValueError: A Tensor shape or parameter is invalid.
  """
  if hidden_size % num_attention_heads != 0:
    raise ValueError(
        "The hidden size (%d) is not a multiple of the number of attention "
        "heads (%d)" % (hidden_size, num_attention_heads))

  attention_head_size = int(hidden_size / num_attention_heads)
  input_shape = get_shape_list(input_tensor, expected_rank=3)
  batch_size = input_shape[0]
  seq_length = input_shape[1]
  input_width = input_shape[2]

  # The Transformer performs sum residuals on all layers so the input needs
  # to be the same as the hidden size.
  if input_width != hidden_size:
    raise ValueError("The width of the input tensor (%d) != hidden size (%d)" %
                     (input_width, hidden_size))

  # We keep the representation as a 2D tensor to avoid re-shaping it back and
  # forth from a 3D tensor to a 2D tensor. Re-shapes are normally free on
  # the GPU/CPU but may not be free on the TPU, so we want to minimize them to
  # help the optimizer.
  prev_output = reshape_to_matrix(input_tensor)       #这里官方说为了避免来回升降维,所以直接先变形为2D,最后再恢复成3D   [batch_size*seq_length,hidden_size]

  all_layer_outputs = []
  for layer_idx in range(num_hidden_layers):
    with tf.variable_scope("layer_%d" % layer_idx):
      layer_input = prev_output

      with tf.variable_scope("attention"):
        attention_heads = []
        with tf.variable_scope("self"):
          attention_head = attention_layer(            #进行self_attention 即multi-head attention
              from_tensor=layer_input,      #[batch_size*seq_length,hidden_size]
              to_tensor=layer_input,        #[batch_size*seq_length,hidden_size]
              attention_mask=attention_mask,
              num_attention_heads=num_attention_heads,
              size_per_head=attention_head_size,
              attention_probs_dropout_prob=attention_probs_dropout_prob,
              initializer_range=initializer_range,
              do_return_2d_tensor=True,
              batch_size=batch_size,
              from_seq_length=seq_length,
              to_seq_length=seq_length)
          attention_heads.append(attention_head)

        attention_output = None
        if len(attention_heads) == 1:
          attention_output = attention_heads[0]
        else:
          # In the case where we have other sequences, we just concatenate
          # them to the self-attention head before the projection.
          attention_output = tf.concat(attention_heads, axis=-1)

        # Run a linear projection of `hidden_size` then add a residual
        # with `layer_input`.
        with tf.variable_scope("output"):
          attention_output = tf.layers.dense(                  #对attention的输出做一个全连接层
              attention_output,
              hidden_size,
              kernel_initializer=create_initializer(initializer_range))
          attention_output = dropout(attention_output, hidden_dropout_prob)   
          attention_output = layer_norm(attention_output + layer_input)         #残差和layer_norm
	  #Feed Foward过程,先对输出升维、再进行降维
      # The activation is only applied to the "intermediate" hidden layer.
      with tf.variable_scope("intermediate"):
        intermediate_output = tf.layers.dense(             #升维
            attention_output,
            intermediate_size,
            activation=intermediate_act_fn,
            kernel_initializer=create_initializer(initializer_range))

      # Down-project back to `hidden_size` then add the residual.
      with tf.variable_scope("output"):                       #降维
        layer_output = tf.layers.dense(
            intermediate_output,
            hidden_size,
            kernel_initializer=create_initializer(initializer_range))
        layer_output = dropout(layer_output, hidden_dropout_prob)
        layer_output = layer_norm(layer_output + attention_output)    #加入残差
        prev_output = layer_output                 #本层输出作为下一层输入
        all_layer_outputs.append(layer_output)       #所有层的输出结果列表

  if do_return_all_layers:
    final_outputs = []
    for layer_output in all_layer_outputs:
      final_output = reshape_from_matrix(layer_output, input_shape)
      final_outputs.append(final_output)
    return final_outputs
  else:
    final_output = reshape_from_matrix(prev_output, input_shape)
    return final_output

self_attention

接下来介绍self_attention机制。他运用乘法注意力,自己和自己做attention,使每个词都全局语义信息。同时运用Multi-head attention。即将hidden_size平分为多个部分(head)。每个head进行self_attention。不同head学习不同子空间语义。
在这里插入图片描述
下面是代码,关键部分我已写上注释。首先将输入的key和value,reshape成[batch_size,num_head,seq_length,size_per_head]。在对这些head进行乘法注意力运算。经过softmax后乘以value。最后返回tensor with shape [batch_size*seq_length,hidden_size]

def attention_layer(from_tensor,      #from_tensor和to_tensor都是输入embedding  [batch_size*seq_length,hidden_size]
                    to_tensor,
                    attention_mask=None,    #[batch_size,form_seq_length,to_seq_length]
                    num_attention_heads=1,
                    size_per_head=512,
                    query_act=None,
                    key_act=None,
                    value_act=None,
                    attention_probs_dropout_prob=0.0,
                    initializer_range=0.02,
                    do_return_2d_tensor=False,
                    batch_size=None,
                    from_seq_length=None,
                    to_seq_length=None):
  """Performs multi-headed attention from `from_tensor` to `to_tensor`.
  This is an implementation of multi-headed attention based on "Attention
  is all you Need". If `from_tensor` and `to_tensor` are the same, then
  this is self-attention. Each timestep in `from_tensor` attends to the
  corresponding sequence in `to_tensor`, and returns a fixed-with vector.
  This function first projects `from_tensor` into a "query" tensor and
  `to_tensor` into "key" and "value" tensors. These are (effectively) a list
  of tensors of length `num_attention_heads`, where each tensor is of shape
  [batch_size, seq_length, size_per_head].
  Then, the query and key tensors are dot-producted and scaled. These are
  softmaxed to obtain attention probabilities. The value tensors are then
  interpolated by these probabilities, then concatenated back to a single
  tensor and returned.
  In practice, the multi-headed attention are done with transposes and
  reshapes rather than actual separate tensors.
  Args:
    from_tensor: float Tensor of shape [batch_size, from_seq_length,
      from_width].
    to_tensor: float Tensor of shape [batch_size, to_seq_length, to_width].
    attention_mask: (optional) int32 Tensor of shape [batch_size,
      from_seq_length, to_seq_length]. The values should be 1 or 0. The
      attention scores will effectively be set to -infinity for any positions in
      the mask that are 0, and will be unchanged for positions that are 1.
    num_attention_heads: int. Number of attention heads.
    size_per_head: int. Size of each attention head.
    query_act: (optional) Activation function for the query transform.
    key_act: (optional) Activation function for the key transform.
    value_act: (optional) Activation function for the value transform.
    attention_probs_dropout_prob: (optional) float. Dropout probability of the
      attention probabilities.
    initializer_range: float. Range of the weight initializer.
    do_return_2d_tensor: bool. If True, the output will be of shape [batch_size
      * from_seq_length, num_attention_heads * size_per_head]. If False, the
      output will be of shape [batch_size, from_seq_length, num_attention_heads
      * size_per_head].
    batch_size: (Optional) int. If the input is 2D, this might be the batch size
      of the 3D version of the `from_tensor` and `to_tensor`.
    from_seq_length: (Optional) If the input is 2D, this might be the seq length
      of the 3D version of the `from_tensor`.
    to_seq_length: (Optional) If the input is 2D, this might be the seq length
      of the 3D version of the `to_tensor`.
  Returns:
    float Tensor of shape [batch_size, from_seq_length,
      num_attention_heads * size_per_head]. (If `do_return_2d_tensor` is
      true, this will be of shape [batch_size * from_seq_length,
      num_attention_heads * size_per_head]).
  Raises:
    ValueError: Any of the arguments or tensor shapes are invalid.
  """

  def transpose_for_scores(input_tensor, batch_size, num_attention_heads,
                           seq_length, width):
    output_tensor = tf.reshape(
        input_tensor, [batch_size, seq_length, num_attention_heads, width])

    output_tensor = tf.transpose(output_tensor, [0, 2, 1, 3])
    return output_tensor

  from_shape = get_shape_list(from_tensor, expected_rank=[2, 3])
  to_shape = get_shape_list(to_tensor, expected_rank=[2, 3])

  if len(from_shape) != len(to_shape):
    raise ValueError(
        "The rank of `from_tensor` must match the rank of `to_tensor`.")

  if len(from_shape) == 3:
    batch_size = from_shape[0]
    from_seq_length = from_shape[1]
    to_seq_length = to_shape[1]
  elif len(from_shape) == 2:
    if (batch_size is None or from_seq_length is None or to_seq_length is None):
      raise ValueError(
          "When passing in rank 2 tensors to attention_layer, the values "
          "for `batch_size`, `from_seq_length`, and `to_seq_length` "
          "must all be specified.")

  # Scalar dimensions referenced here:
  #   B = batch size (number of sequences)
  #   F = `from_tensor` sequence length
  #   T = `to_tensor` sequence length
  #   N = `num_attention_heads`
  #   H = `size_per_head`

  from_tensor_2d = reshape_to_matrix(from_tensor)   #[batch_size*seq_length,hidden_size]
  to_tensor_2d = reshape_to_matrix(to_tensor)          #[batch_size*seq_length,hidden_size]
#首先将key和value输入进全连接层 但是激活函数为None,这里为什么我也不知道。。。
  # `query_layer` = [B*F, N*H]
  query_layer = tf.layers.dense(
      from_tensor_2d,
      num_attention_heads * size_per_head,
      activation=query_act,              #None
      name="query",
      kernel_initializer=create_initializer(initializer_range)) # [batch_size*seq_length,hidden_size] hidden_size即num_attention_heads*size_per_head

  # `key_layer` = [B*T, N*H]
  key_layer = tf.layers.dense(
      to_tensor_2d,
      num_attention_heads * size_per_head,
      activation=key_act,               #None
      name="key",
      kernel_initializer=create_initializer(initializer_range))   

  # `value_layer` = [B*T, N*H]
  value_layer = tf.layers.dense(
      to_tensor_2d,
      num_attention_heads * size_per_head,
      activation=value_act,            #None
      name="value",
      kernel_initializer=create_initializer(initializer_range))
#reshape成四位,用于注意力矩阵运算
  # `query_layer` = [B, N, F, H]
  query_layer = transpose_for_scores(query_layer, batch_size,      #将num_attention_heads调到第二维。这里表示每个batch有N个head,每个head有F个token,每个token用H表示。不同head学习不同子空间的特征
                                     num_attention_heads, from_seq_length,
                                     size_per_head)

  # `key_layer` = [B, N, T, H]
  key_layer = transpose_for_scores(key_layer, batch_size, num_attention_heads,
                                   to_seq_length, size_per_head)

  # Take the dot product between "query" and "key" to get the raw
  # attention scores.   乘法注意力
  # `attention_scores` = [B, N, F, T]
  attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True)
  attention_scores = tf.multiply(attention_scores,
                                 1.0 / math.sqrt(float(size_per_head)))

  if attention_mask is not None:
    # `attention_mask` = [B, 1, F, T]
    attention_mask = tf.expand_dims(attention_mask, axis=[1])
    
    #这部分将每条训练语料的结尾padding的部分都变为一个极小值,其他有实数据的部分都为0
    # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
    # masked positions, this operation will create a tensor which is 0.0 for
    # positions we want to attend and -10000.0 for masked positions.
    adder = (1.0 - tf.cast(attention_mask, tf.float32)) * -10000.0

    # Since we are adding it to the raw scores before the softmax, this is
    # effectively the same as removing these entirely.
    #相加后,有实数据的部分加的,padding部分都是一个极小值
    attention_scores += adder

  # Normalize the attention scores to probabilities.
  # `attention_probs` = [B, N, F, T]
  attention_probs = tf.nn.softmax(attention_scores)

  # This is actually dropping out entire tokens to attend to, which might
  # seem a bit unusual, but is taken from the original Transformer paper.
  attention_probs = dropout(attention_probs, attention_probs_dropout_prob)

  # `value_layer` = [B, T, N, H]
  value_layer = tf.reshape(
      value_layer,
      [batch_size, to_seq_length, num_attention_heads, size_per_head])

  # `value_layer` = [B, N, T, H]
  value_layer = tf.transpose(value_layer, [0, 2, 1, 3])

  # `context_layer` = [B, N, F, H]
 # 注意力矩阵乘以value
  context_layer = tf.matmul(attention_probs, value_layer)

  # `context_layer` = [B, F, N, H]
  context_layer = tf.transpose(context_layer, [0, 2, 1, 3])

  if do_return_2d_tensor:
 # 返回2D结果
    # `context_layer` = [B*F, N*V]
    context_layer = tf.reshape(
        context_layer,
        [batch_size * from_seq_length, num_attention_heads * size_per_head])
  else:
    # `context_layer` = [B, F, N*V]
    context_layer = tf.reshape(
        context_layer,
        [batch_size, from_seq_length, num_attention_heads * size_per_head])

  return context_layer

模型应用

模型怎么用呢,在BertModel class中有两个函数。get_pool_output表示获取每个batch第一个词的[CLS]表示结果。BERT认为这个词包含了整条语料的信息;适用于句子级别的分类问题。get_sequence_output表示BERT最终的输出结果,shape为[batch_size,seq_length,hidden_size]。可以直观理解为对每条语料的最终表示,适用于seq2seq问题。
谷歌BERT预训练源码解析(二):模型构建_第1张图片

def get_pooled_output(self):
  return self.pooled_outp          #[batch_size, hidden_size]
def get_sequence_output(self):
  """Gets final hidden layer of encoder.
  Returns:
    float Tensor of shape [batch_size, seq_length, hidden_size] corresponding
    to the final hidden of the transformer encoder.
  """
  return self.sequence_output

下一篇是训练过程。最近突然有两件事要忙,所以可能要鸽几天了

你可能感兴趣的:(BERT)