数据集例子
简单的例子的神经网络图如下:
所以在下面的代码中,每个例子x_input 是一个784的一维向量,y_lables 是一个10的向量。
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
from tensorflow import float32
#载入数据,会自动通过一个脚本下载好数据集
mnist = input_data.read_data_sets("MNIST_data", one_hot=True)
#每个批次大小以及多少批次
batch_size = 100
n_batch = mnist.train.num_examples // batch_size
#设置两个占位符
x = tf.placeholder(dtype=tf.float32, shape=[None, 784])
y = tf.placeholder(dtype=tf.float32, shape=[None, 10])
#创建一个简单的神经网络
W = tf.Variable(tf.zeros([784, 10]),float32)
b = tf.Variable(tf.zeros([10]),float32)
prediction = tf.nn.softmax(tf.matmul(x, W)+b)
#二次代价函数
loss = tf.reduce_mean(tf.square(y-prediction))
#使用梯度下降方法
train_step = tf.train.GradientDescentOptimizer(0.2).minimize(loss)
#初始化变量
init = tf.global_variables_initializer()
#结果放在布尔型列表中,其中argmax返回数列中最大值所在的位置
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(prediction, 1))
#求准确性
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
with tf.Session() as sess:
sess.run(init)
for epoch in range (21):
for batch in range (n_batch):
batch_xs, batch_ys = mnist.train.next_batch(batch_size)
sess.run(train_step, feed_dict={x:batch_xs, y:batch_ys})
acc = sess.run(accuracy, feed_dict={x:mnist.test.images, y:mnist.test.labels})
print("Iter" + str(epoch) + "Testing Accuracy" + str(acc))
# 结果如下
#Extracting MNIST_data\train-images-idx3-ubyte.gz
#Extracting MNIST_data\train-labels-idx1-ubyte.gz
#Extracting MNIST_data\t10k-images-idx3-ubyte.gz
#Extracting MNIST_data\t10k-labels-idx1-ubyte.gz
#Iter0Testing Accuracy0.8314
#Iter1Testing Accuracy0.87
#Iter2Testing Accuracy0.8812
#Iter3Testing Accuracy0.8889
#Iter4Testing Accuracy0.8947
#Iter5Testing Accuracy0.8974
#Iter7Testing Accuracy0.9021
#Iter8Testing Accuracy0.9037
#Iter9Testing Accuracy0.9054
#Iter10Testing Accuracy0.9061
#Iter11Testing Accuracy0.9065
#Iter12Testing Accuracy0.9089
#Iter13Testing Accuracy0.9091
#Iter14Testing Accuracy0.9093
#Iter15Testing Accuracy0.9113
#Iter16Testing Accuracy0.9112
#Iter17Testing Accuracy0.9119
#Iter18Testing Accuracy0.9131
#Iter19Testing Accuracy0.9144
#Iter20Testing Accuracy0.9143
对代码进行改进:
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
from tensorflow import float32
#载入数据
mnist = input_data.read_data_sets("MNIST_data", one_hot=True)
#每个批次大小以及多少批次
batch_size = 100
n_batch = mnist.train.num_examples // batch_size
#设置两个占位符
x = tf.placeholder(dtype=tf.float32, shape=[None, 784])
y = tf.placeholder(dtype=tf.float32, shape=[None, 10])
keep_prob = tf.placeholder(tf.float32)
#创建一个神经网络,初始化参数不使用00000000,增加dropout防止过拟合
W1 = tf.Variable(tf.truncated_normal([784, 2000],stddev=0.1))
b1 = tf.Variable(tf.zeros([2000])+0.1)
L1 = tf.nn.tanh(tf.matmul(x, W1)+b1)
L1_drop = tf.nn.dropout(L1, keep_prob)
W2 = tf.Variable(tf.truncated_normal([2000, 2000],stddev=0.1))
b2 = tf.Variable(tf.zeros([2000])+0.1)
L2 = tf.nn.tanh(tf.matmul(L1_drop, W2)+b2)
L2_drop = tf.nn.dropout(L2, keep_prob)
W3 = tf.Variable(tf.truncated_normal([2000, 1000],stddev=0.1))
b3 = tf.Variable(tf.zeros([1000])+0.1)
L3 = tf.nn.tanh(tf.matmul(L2_drop, W3)+b3)
L3_drop = tf.nn.dropout(L3, keep_prob)
W4 = tf.Variable(tf.truncated_normal([1000, 10],stddev=0.1))
b4 = tf.Variable(tf.zeros([10])+0.1)
prediction = tf.nn.softmax(tf.matmul(L3_drop, W4)+b4)
#二次代价函数
loss = tf.reduce_mean(tf.square(y-prediction))
#使用梯度下降方法
train_step = tf.train.GradientDescentOptimizer(0.2).minimize(loss)
#初始化变量
init = tf.global_variables_initializer()
#结果放在布尔型列表中,其中argmax返回数列中最大值所在的位置
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(prediction, 1))
#求准确性
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
with tf.Session() as sess:
sess.run(init)
for epoch in range (21):
for batch in range (n_batch):
batch_xs, batch_ys = mnist.train.next_batch(batch_size)
sess.run(train_step, feed_dict={x:batch_xs, y:batch_ys, keep_prob:1.0})
test_acc = sess.run(accuracy, feed_dict={x:mnist.test.images, y:mnist.test.labels, keep_prob:1.0})
train_acc = sess.run(accuracy, feed_dict={x:mnist.train.images, y:mnist.train.labels, keep_prob:1.0})
print("Iter" + str(epoch) + "Testing Accuracy" + str(test_acc) + ",Training Accuracy "+ str(train_acc))
# 结果
#Extracting MNIST_data\train-images-idx3-ubyte.gz
#Extracting MNIST_data\train-labels-idx1-ubyte.gz
#Extracting MNIST_data\t10k-images-idx3-ubyte.gz
#Extracting MNIST_data\t10k-labels-idx1-ubyte.gz
#Iter0Testing Accuracy0.9208,Training Accuracy 0.9330909
#Iter1Testing Accuracy0.9339,Training Accuracy 0.9575091
#Iter2Testing Accuracy0.9421,Training Accuracy 0.97023636
#Iter3Testing Accuracy0.9465,Training Accuracy 0.9766
#Iter4Testing Accuracy0.9495,Training Accuracy 0.9806182
上图网络太复杂,然后数据集太少,导致有过拟合现象
下面这个是用的交叉熵和别的优化方式
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
from tensorflow import float32
#载入数据,会自动通过一个脚本下载好数据集
mnist = input_data.read_data_sets("MNIST_data", one_hot=True)
#每个批次大小以及多少批次
batch_size = 100
n_batch = mnist.train.num_examples // batch_size
#设置两个占位符
x = tf.placeholder(dtype=tf.float32, shape=[None, 784])
y = tf.placeholder(dtype=tf.float32, shape=[None, 10])
#创建一个简单的神经网络
W = tf.Variable(tf.zeros([784, 10]),float32)
b = tf.Variable(tf.zeros([10]),float32)
prediction = tf.nn.softmax(tf.matmul(x, W)+b)
#二次代价函数
#loss = tf.reduce_mean(tf.square(y-prediction))
#使用交叉熵代价函数
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(labels=y, logits=prediction))
#使用梯度下降方法
#train_step = tf.train.GradientDescentOptimizer(0.2).minimize(loss)
train_step = tf.train.AdamOptimizer(1e-2).minimize(loss) #使用别的优化方式
#初始化变量
init = tf.global_variables_initializer()
#结果放在布尔型列表中,其中argmax返回数列中最大值所在的位置
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(prediction, 1))
#求准确性
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
with tf.Session() as sess:
sess.run(init)
for epoch in range (21):
for batch in range (n_batch):
batch_xs, batch_ys = mnist.train.next_batch(batch_size)
sess.run(train_step, feed_dict={x:batch_xs, y:batch_ys})
acc = sess.run(accuracy, feed_dict={x:mnist.test.images, y:mnist.test.labels})
print("Iter" + str(epoch) + "Testing Accuracy" + str(acc))
由于训练集也不多,为了防止过拟合,不能有太多的网络,现设计一个三层的神经网络,然后使用dropout随机丢弃网络,在使学习率随迭代次数的增加而变小,得到一个准确率稍高的模型
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
from tensorflow import float32
#载入数据
mnist = input_data.read_data_sets("MNIST_data", one_hot=True)
#每个批次大小以及多少批次
batch_size = 100
n_batch = mnist.train.num_examples // batch_size
#设置两个占位符
x = tf.placeholder(dtype=tf.float32, shape=[None, 784])
y = tf.placeholder(dtype=tf.float32, shape=[None, 10])
keep_prob = tf.placeholder(tf.float32)
lr = tf.Variable(0.001, dtype=tf.float32)#增加一个学习率,使它越来越小。
#创建一个三层的神经网络,初始化参数不使用00000000,增加dropout防止过拟合
W1 = tf.Variable(tf.truncated_normal([784, 500],stddev=0.1))
b1 = tf.Variable(tf.zeros([500])+0.1)
L1 = tf.nn.tanh(tf.matmul(x, W1)+b1)
L1_drop = tf.nn.dropout(L1, keep_prob)
W2 = tf.Variable(tf.truncated_normal([500, 300],stddev=0.1))
b2 = tf.Variable(tf.zeros([300])+0.1)
L2 = tf.nn.tanh(tf.matmul(L1_drop, W2)+b2)
L2_drop = tf.nn.dropout(L2, keep_prob)
W3 = tf.Variable(tf.truncated_normal([300, 10],stddev=0.1))
b3 = tf.Variable(tf.zeros([10])+0.1)
prediction = tf.nn.softmax(tf.matmul(L2_drop, W3)+b3)
#二次代价函数
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(labels=y, logits=prediction))
#使用梯度下降方法
train_step = tf.train.AdamOptimizer(lr).minimize(loss)
#初始化变量
init = tf.global_variables_initializer()
#结果放在布尔型列表中,其中argmax返回数列中最大值所在的位置
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(prediction, 1))
#求准确性
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
with tf.Session() as sess:
sess.run(init)
for epoch in range (51):
sess.run(tf.assign(lr, 0.01 * (0.95 ** epoch)))
for batch in range (n_batch):
batch_xs, batch_ys = mnist.train.next_batch(batch_size)
sess.run(train_step, feed_dict={x:batch_xs, y:batch_ys, keep_prob:0.8})
learing_rate = sess.run(lr) #每一个epoch之后,还需要sees.run(lr)一下
test_acc = sess.run(accuracy, feed_dict={x:mnist.test.images, y:mnist.test.labels, keep_prob:1.0})
train_acc = sess.run(accuracy, feed_dict={x:mnist.train.images, y:mnist.train.labels, keep_prob:1.0})
print("Iter" + str(epoch) + "Testing Accuracy" + str(test_acc) + ",Training Accuracy "+ str(train_acc))
#result
#Iter50 Testing Accuracy0.966,Training Accuracy 0.9808364