- 【人工智能之深度学习】1. 深度学习基石:神经元模型与感知机的数学本质(附代码实现与收敛性证明)
AI_DL_CODE
人工智能之深度学习人工智能深度学习神经元模型感知机赫布法则深度学习基础线性可分
摘要:作为深度学习的基础单元,神经元模型与感知机承载着从生物智能到人工神经网络的桥梁作用。本文从生物神经元的工作机制出发,系统剖析数学建模过程:详解赫布法则的权重更新原理(Δwi=η·xi·y),推导McCulloch-Pitts神经元模型的数学表达(y=Θ(∑wixi−b)),重点证明感知机在linear可分情况下的收敛性——通过Novikoff定理严格推导迭代次数上界,揭示间隔γ对收敛速度的影
- 深度学习在环境感知中的应用:案例与代码实现
让机器学会“看”世界:深度学习如何赋能环境感知?关键词深度学习|环境感知|计算机视觉|传感器融合|语义分割|目标检测|自动驾驶摘要环境感知是机器与外界互动的“眼睛和耳朵”——从自动驾驶汽车识别行人,到智能机器人避开障碍物,再到城市监控系统检测异常,所有智能系统都需要先“理解”环境,才能做出决策。传统环境感知方法依赖手工特征提取,难以应对复杂场景;而深度学习通过数据驱动的方式,让机器从大量数据中自动
- 自编码器表征学习:重构误差与隐空间拓扑结构的深度解析
码字的字节
机器学习自编码器重构误差隐空间
自编码器基础与工作原理自编码器(Autoencoder)作为深度学习领域的重要无监督学习模型,其核心思想是通过模拟人类认知过程中的"压缩-解压"机制实现数据的表征学习。这种由GeoffreyHinton团队在2006年复兴的神经网络结构,本质上是一个试图通过编码-解码过程来复制其输入的系统,却在实现这一看似简单目标的过程中,意外地获得了强大的特征提取能力。基本架构与工作流程典型自编码器由对称的两部
- 高斯混合模型(GMM)中的协方差矩阵类型与聚类形状关系详解
码字的字节
机器学习机器学习人工智能高斯混合模型GMM
高斯混合模型(GMM)简介高斯混合模型(GaussianMixtureModel,GMM)是概率统计与机器学习交叉领域的重要模型,其核心思想是通过多个高斯分布的线性组合来描述复杂数据分布。与单一高斯分布不同,GMM能够捕捉数据中的多模态特性,这使得它在处理真实世界非均匀分布数据时展现出独特优势。从数学形式上看,一个包含K个分量的GMM可表示为:其中(\pi_k)是第k个高斯分量的混合系数(满足(\
- 基于YOLOv8的Web端交互式目标检测系统设计与实现
YOLO实战营
YOLO前端目标检测人工智能ui目标跟踪计算机视觉
1.引言目标检测是计算机视觉领域的一项重要任务,它在安防监控、自动驾驶、医疗影像分析等领域有着广泛的应用。近年来,随着深度学习技术的快速发展,YOLO(YouOnlyLookOnce)系列算法因其出色的速度和精度平衡而备受关注。本文将详细介绍如何基于最新的YOLOv8模型构建一个Web端交互式目标检测系统,包含完整的UI界面设计和数据集处理流程。本系统将实现以下功能:基于YOLOv8的高效目标检测
- 基于卷积神经网络与小波变换的医学图像超分辨率算法复现
神经网络15044
python算法cnn算法人工智能图像处理开发语言神经网络深度学习
基于卷积神经网络与小波变换的医学图像超分辨率算法复现前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家,觉得好请收藏。点击跳转到网站。1.引言医学图像超分辨率技术在临床诊断和治疗规划中具有重要意义。高分辨率的医学图像能够提供更丰富的细节信息,帮助医生做出更准确的诊断。近年来,深度学习技术在图像超分辨率领域取得了显著进展。本文将复现一种结合卷积神经网络(CNN)、小波变
- 深度学习系列----->环境搭建(Ubuntu)
二师兄用飘柔
深度学习历程深度学习ubuntu人工智能pytorchpython
1、前言电脑基础系统硬件情况:系统:ubuntu18.04、显卡:GTX1050Ti;后续的环境搭建都在此基础上进行。此次学习选择Pytorch作为深度学习的框架,选择的原因主要由于PyTorch在研究领域特别受欢迎,较多的论文框架也是基于其开发。2、anaconda+python3安装测试在学习深度学习的过程中会涉及到使用不同版本python包的问题,而anaconda可以便捷获取包且对包能够进
- 深度学习-常用环境配置
瑶山
AIlinux人工智能windowsCUDAPyTorch
目录Miniconda安装安装NVIDIA显卡驱动安装CUDA和cnDNNCUDAcuDNNPyTorch安装手动下载测试Miniconda安装最新版Miniconda搭建Python环境_miniconda创建python虚拟环境-CSDN博客安装NVIDIA显卡驱动直接进NVIDIA官网:NVIDIAGeForce驱动程序-N卡驱动|NVIDIA在这里有GeForce驱动程序,立即下载,这是下
- 机器学习初学者理论初解
Mikhail_G
机器学习人工智能
大家好!为什么手机相册能自动识别人脸?为什么购物网站总能推荐你喜欢的商品?这些“智能”背后,都藏着一位隐形高手——机器学习(MachineLearning)。一、什么是机器学习?简单说,机器学习是教计算机从数据中自己找规律的技术。就像教孩子认猫:不是直接告诉他“猫有尖耳朵和胡须”,而是给他看100张猫狗照片,让他自己总结出猫的特征。传统程序vs机器学习传统程序:输入规则+数据→输出结果(例:按“温
- Embedding与向量数据库
玖月初玖
大模型应用开发基础人工智能embedding数据库
1.Embedding是什么EmbeddingModel是一种机器学习模型,它的核心任务是将离散的、高维的符号(如单词、句子、图片、用户、商品等)转换成连续的、低维的向量(称为“嵌入”或“向量表示”),并且这个向量能有效地捕捉原始符号的语义、关系或特征。1.1通俗理解EmbeddingModel是让计算机“理解”世界的核心工具,把“文字、图片、音频”等信息变成一串有意义的数字我们称之为“向量”。类
- 2023年第10期(NeuroImage):DomainATM:多中心医学图像数据标准化工具箱
影浮科技ImageFlow
基本信息1.标题:DomainATM:Domainadaptationtoolboxformedicaldataanalysis.2.期刊:NeuroImage3.IF/JCR/分区:7.4/Q1/中科院一区4.DOI:10.1016/j.neuroimage.2023.119863目录1、导读2、背景动机3、研究目的4、工具箱介绍5、测试试验6、局限不足1导读域适应(DA)是基于机器学习的现代医
- 在NLP深层语义分析中,深度学习和机器学习的区别与联系
在自然语言处理(NLP)的深层语义分析任务中,深度学习与机器学习的区别和联系主要体现在以下方面:一、核心区别特征提取方式机器学习:依赖人工设计特征(如词频、句法规则、TF-IDF等),需要领域专家对文本进行结构化处理。例如,传统情感分析需人工定义“情感词库”或通过词性标注提取关键成分。深度学习:通过神经网络自动学习多层次特征。例如,BERT等模型可从原始文本中捕获词向量、句法关系甚至篇章级语义,无
- 深度学习--利用梯度下降法进行多变量的二分类(感知机)
白话学生nit
深度学习分类人工智能
其实这一节涉及到了感知机的相关知识,就把这一节当作是学习感知机的引子吧。什么是二分类我们先来说一下什么是二分类,二分类指的是将结果分为两个互斥的类别,通常用来表示问题的两种可能。为什么用感知机学习二分类常见的解决问题的模型有很多,这里我们使用感知机模型。至于为什么,因为感知机模型很多地方用起来比较简便,就拿我们这一节的问题举一下例子,我们需要依照房子的价格对房子进行分类。在感知机模型中,我们可以使
- 迁移学习:知识复用的智能迁移引擎 | 从理论到实践的跨域赋能范式
大千AI助手
人工智能Python#OTHER迁移学习人工智能机器学习算法神经网络大模型迁移
让AI像人类一样“举一反三”的通用学习框架本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!一、核心定义与基本概念迁移学习(TransferLearning)是一种机器学习范式,其核心思想是:将源领域(SourceDomain)学到的知识迁移到目标领域(TargetDomain),以提升目标任务的性能
- AI原生应用中的用户画像构建:从理论到实践全解析
AI原生应用中的用户画像构建:从理论到实践全解析关键词:用户画像、AI原生应用、特征工程、机器学习、个性化推荐、数据隐私、模型优化摘要:本文全面解析AI原生应用中用户画像构建的全过程,从基础概念到核心技术,再到实际应用和未来趋势。我们将用通俗易懂的方式讲解用户画像如何像"数字身份证"一样工作,深入探讨特征提取、模型构建等关键技术,并通过实际案例展示用户画像在推荐系统、精准营销等场景中的应用。文章还
- 智能喷洒机器人目标识别系统:基于NanoDet的目标检测与UI界面实现
YOLO实战营
机器人目标检测uiNanoDet计算机视觉目标跟踪深度学习
在现代农业生产中,自动化喷洒系统是实现精准农业的重要组成部分。智能喷洒机器人通过图像识别和自动控制技术,能够高效识别并精确喷洒农药、肥料等,提高农业生产效率,降低化学品使用量,减少环境污染。目标识别是智能喷洒机器人中至关重要的部分,它涉及到精准的作物和病虫害识别,确保喷洒操作的准确性。在本篇博客中,我们将构建一个基于NanoDet深度学习目标检测模型的智能喷洒机器人目标识别系统。我们将介绍如何使用
- 对标ChatGPT,「文心一言」今日亮相!AI人机时代来临,未来在何方?
AI医学
本文由「AI医学er」提供医海无涯,AI同舟。关注我们,助力高效科研。3月15日,OpenAI公布了其大型语言模型的最新版本——GPT-4。3月16日,百度文心一言人工智能聊天机器人正式上线。一个时代开始了。OpenAI在官网表示,GPT-4是一个能接受图像和文本输入,并输出文本的多模态模型,是OpenAI在扩展深度学习方面的最新成果。此前的ChatGPT,只能通过向其输入文字提问才能生成文字回答
- 【深度学习新浪潮】什么是system 1和system 2?
小米玄戒Andrew
深度学习新浪潮深度学习人工智能大模型推理模型COT模型蒸馏动态推理
在大模型研究中,System1和System2的概念源于心理学家DanielKahneman的双系统理论,用于描述人类思维的两种模式。System1代表快速、直觉、自动化的思维(如模式识别),而System2代表慢速、有意识、需要努力的逻辑推理(如复杂数学计算)。这一理论被引入AI领域后,成为理解大模型能力边界和优化方向的重要框架。一、大模型中的System1与System2的定义System1(
- 学习人工智能开发的详细指南
Ws_
学习人工智能python
一、引言人工智能(AI)开发是一个充满挑战与机遇的领域,它融合了数学、计算机科学、统计学、认知科学等多个学科的知识。随着大数据、云计算和深度学习技术的快速发展,AI已经成为推动社会进步和产业升级的关键力量。本文将为初学者提供一份详细的学习指南,帮助大家逐步掌握AI开发的核心技能。二、基础知识准备数学基础:线性代数:理解向量、矩阵、线性变换等基本概念,掌握矩阵运算和特征值分解等技巧。概率论与统计学:
- Python爬虫【四十五章】爬虫攻防战:异步并发+AI反爬识别的技术解密
程序员_CLUB
Python入门到进阶python爬虫人工智能
目录引言:当爬虫工程师遇上AI反爬官一、异步并发基础设施层1.1混合调度框架设计1.2智能连接池管理二、机器学习反爬识别层2.1特征工程体系2.2轻量级在线推理三、智能决策系统3.1动态策略引擎3.2实时对抗案例四、性能优化实战4.1全链路压测数据4.2典型故障处理案例五、总结:构建智能化的爬虫生态系统Python爬虫相关文章(推荐)引言:当爬虫工程师遇上AI反爬官在大数据采集领域,我们正经历着技
- AI人工智能领域知识图谱在文本分类中的应用技巧
AI天才研究院
AI大模型企业级应用开发实战人工智能知识图谱分类ai
AI人工智能领域知识图谱在文本分类中的应用技巧关键词:知识图谱、文本分类、图神经网络、实体关系抽取、深度学习、自然语言处理、特征融合摘要:本文深入探讨了知识图谱在文本分类任务中的应用技巧。我们将从知识图谱的基本概念出发,详细分析如何将结构化知识融入传统文本分类流程,介绍最新的图神经网络方法,并通过实际案例展示知识增强型文本分类系统的构建过程。文章特别关注知识表示学习与文本特征的融合策略,以及在不同
- 解读一个大学专业——信号与图像处理
专业定义与核心内容维度内容定义研究如何采集、处理、分析和理解一维信号(语音、雷达、脑电)和二维/三维图像(医学、遥感、工业视觉)。关键词数字信号处理(DSP)、图像处理、计算机视觉、模式识别、压缩感知、深度学习、GPU加速、嵌入式系统。技术栈MATLAB/Python+OpenCV/PyTorch+DSP/FPGA+GPU(CUDA)第五届先进算法与信号、图像处理国际学术会议(AASIP2025)
- Pad Token技术原理与实现指南
Takoony
AI
目录概述理论基础:第一性原理分析技术实现机制工程最佳实践性能优化策略常见问题与解决方案技术发展趋势附录1.概述1.1文档目的本文档旨在深入阐述深度学习中PadToken的技术原理、实现机制及工程应用,为算法工程师提供全面的理论指导和实践参考。1.2适用范围自然语言处理模型开发序列数据批处理优化深度学习系统架构设计高性能计算资源管理1.3核心问题研究问题:为什么深度学习模型需要将变长序列统一到固定长
- 深度学习分布式训练:并行策略与通信机制的系统性分析
Takoony
深度学习分布式人工智能
1.引言随着深度学习模型规模的指数级增长,单一计算设备已无法满足训练需求。以GPT-3为例,其1750亿参数在FP16精度下需要约350GB存储空间(每个参数2字节),远超当前主流GPU的显存容量(如NVIDIAA100的80GB)。根据OpenAI的技术报告[1],即使使用最先进的硬件,单卡训练GPT-3需要355年。这一计算瓶颈催生了分布式训练技术的快速发展。本文将从理论基础出发,系统性地分析
- 万字长文,解读大模型技术原理(非常详细)零基础入门到精通,收藏这一篇就够了
大模型是指具有大规模参数和复杂计算结构的机器学习模型。本文从大模型的发展历程出发,对大模型领域的各个技术细节进行详细解读,供大家在了解大模型基本知识的过程中起到一定参考作用。一、大模型的定义大语言模型作为一个被验证可行的方向,其“大”体现在训练数据集广,模型参数和层数大,计算量大,其价值体现在通用性上,并且有更好的泛化能力。这些模型通常由深度神经网络构建而成,拥有数十亿甚至数千亿个参数。大模型的设
- TensorFlow为AI人工智能航空航天领域带来变革
AI原生应用开发
人工智能tensorflowpythonai
TensorFlow为AI人工智能航空航天领域带来变革关键词:TensorFlow、人工智能、航空航天、机器学习、深度学习、神经网络、自主系统摘要:本文探讨了TensorFlow这一强大的机器学习框架如何推动航空航天领域的创新。我们将从基础概念入手,逐步深入分析TensorFlow在航天器导航、卫星图像处理、飞行器自主决策等关键应用场景中的实现原理。通过实际代码示例和架构图解,展示TensorFl
- 多语言文本分类在AI应用中的实践
AI原生应用开发
人工智能分类数据挖掘ai
多语言文本分类在AI应用中的实践关键词:多语言文本分类、自然语言处理、机器学习、深度学习、BERT、迁移学习、跨语言模型摘要:本文深入探讨多语言文本分类在AI领域的应用实践。我们将从基础概念出发,逐步讲解其核心原理、技术架构和实现方法,并通过实际案例展示如何构建一个高效的多语言文本分类系统。文章将涵盖从传统机器学习方法到最先进的深度学习技术,特别关注跨语言迁移学习在实际业务场景中的应用。背景介绍目
- 从零开始构建AI原生应用的认知架构
AI原生应用开发
AI-native架构ai
从零开始构建AI原生应用的认知架构关键词:AI原生应用、认知架构、机器学习、知识图谱、神经网络、智能决策、系统设计摘要:本文深入探讨如何从零开始构建AI原生应用的认知架构。我们将从基本概念出发,逐步解析认知架构的核心组件,包括知识表示、推理机制和学习能力等。通过生动的比喻和实际代码示例,帮助读者理解如何设计一个能够模拟人类认知过程的AI系统。文章还将介绍当前最先进的认知架构模型,并展望未来发展趋势
- Orange3实战教程:图像分析---图像嵌入
err2008
Orange3实战教程数据挖掘神经网络自然语言处理机器学习计算机视觉深度学习orange3中文版
图像嵌入通过深度神经网络实现图像嵌入。输入图像:图像列表。输出嵌入向量:用数字向量表示的图像。跳过的图像:未计算嵌入向量的图像列表。图像嵌入功能读取图像并将其上传至远程服务器或本地计算。深度学习模型用于为每张图像计算特征向量。该功能返回一个增强的数据表,包含额外的列(图像描述符)。图像可以通过导入图像小部件导入,也可以通过电子表格中的图像路径导入。在这种情况下,包含图像路径的列需要一个三行表头,第
- Deep Multi-scale Convolutional Neural Network for Dynamic Scene Deblurring 论文阅读
钟屿
论文阅读计算机视觉人工智能
用于动态场景去模糊的深度多尺度卷积神经网络摘要针对一般动态场景的非均匀盲去模糊是一个具有挑战性的计算机视觉问题,因为模糊不仅来源于多个物体运动,还来源于相机抖动和场景深度变化。为了去除这些复杂的运动模糊,传统的基于能量优化的方法依赖于简单的假设,例如模糊核是部分均匀或局部线性的。此外,最近的基于机器学习的方法也依赖于在这些假设下生成的合成模糊数据集。这使得传统的去模糊方法在模糊核难以近似或参数化的
- 深入浅出Java Annotation(元注解和自定义注解)
Josh_Persistence
Java Annotation元注解自定义注解
一、基本概述
Annontation是Java5开始引入的新特征。中文名称一般叫注解。它提供了一种安全的类似注释的机制,用来将任何的信息或元数据(metadata)与程序元素(类、方法、成员变量等)进行关联。
更通俗的意思是为程序的元素(类、方法、成员变量)加上更直观更明了的说明,这些说明信息是与程序的业务逻辑无关,并且是供指定的工具或
- mysql优化特定类型的查询
annan211
java工作mysql
本节所介绍的查询优化的技巧都是和特定版本相关的,所以对于未来mysql的版本未必适用。
1 优化count查询
对于count这个函数的网上的大部分资料都是错误的或者是理解的都是一知半解的。在做优化之前我们先来看看
真正的count()函数的作用到底是什么。
count()是一个特殊的函数,有两种非常不同的作用,他可以统计某个列值的数量,也可以统计行数。
在统
- MAC下安装多版本JDK和切换几种方式
棋子chessman
jdk
环境:
MAC AIR,OS X 10.10,64位
历史:
过去 Mac 上的 Java 都是由 Apple 自己提供,只支持到 Java 6,并且OS X 10.7 开始系统并不自带(而是可选安装)(原自带的是1.6)。
后来 Apple 加入 OpenJDK 继续支持 Java 6,而 Java 7 将由 Oracle 负责提供。
在终端中输入jav
- javaScript (1)
Array_06
JavaScriptjava浏览器
JavaScript
1、运算符
运算符就是完成操作的一系列符号,它有七类: 赋值运算符(=,+=,-=,*=,/=,%=,<<=,>>=,|=,&=)、算术运算符(+,-,*,/,++,--,%)、比较运算符(>,<,<=,>=,==,===,!=,!==)、逻辑运算符(||,&&,!)、条件运算(?:)、位
- 国内顶级代码分享网站
袁潇含
javajdkoracle.netPHP
现在国内很多开源网站感觉都是为了利益而做的
当然利益是肯定的,否则谁也不会免费的去做网站
&
- Elasticsearch、MongoDB和Hadoop比较
随意而生
mongodbhadoop搜索引擎
IT界在过去几年中出现了一个有趣的现象。很多新的技术出现并立即拥抱了“大数据”。稍微老一点的技术也会将大数据添进自己的特性,避免落大部队太远,我们看到了不同技术之间的边际的模糊化。假如你有诸如Elasticsearch或者Solr这样的搜索引擎,它们存储着JSON文档,MongoDB存着JSON文档,或者一堆JSON文档存放在一个Hadoop集群的HDFS中。你可以使用这三种配
- mac os 系统科研软件总结
张亚雄
mac os
1.1 Microsoft Office for Mac 2011
大客户版,自行搜索。
1.2 Latex (MacTex):
系统环境:https://tug.org/mactex/
&nb
- Maven实战(四)生命周期
AdyZhang
maven
1. 三套生命周期 Maven拥有三套相互独立的生命周期,它们分别为clean,default和site。 每个生命周期包含一些阶段,这些阶段是有顺序的,并且后面的阶段依赖于前面的阶段,用户和Maven最直接的交互方式就是调用这些生命周期阶段。 以clean生命周期为例,它包含的阶段有pre-clean, clean 和 post
- Linux下Jenkins迁移
aijuans
Jenkins
1. 将Jenkins程序目录copy过去 源程序在/export/data/tomcatRoot/ofctest-jenkins.jd.com下面 tar -cvzf jenkins.tar.gz ofctest-jenkins.jd.com &
- request.getInputStream()只能获取一次的问题
ayaoxinchao
requestInputstream
问题:在使用HTTP协议实现应用间接口通信时,服务端读取客户端请求过来的数据,会用到request.getInputStream(),第一次读取的时候可以读取到数据,但是接下来的读取操作都读取不到数据
原因: 1. 一个InputStream对象在被读取完成后,将无法被再次读取,始终返回-1; 2. InputStream并没有实现reset方法(可以重
- 数据库SQL优化大总结之 百万级数据库优化方案
BigBird2012
SQL优化
网上关于SQL优化的教程很多,但是比较杂乱。近日有空整理了一下,写出来跟大家分享一下,其中有错误和不足的地方,还请大家纠正补充。
这篇文章我花费了大量的时间查找资料、修改、排版,希望大家阅读之后,感觉好的话推荐给更多的人,让更多的人看到、纠正以及补充。
1.对查询进行优化,要尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。
2.应尽量避免在 where
- jsonObject的使用
bijian1013
javajson
在项目中难免会用java处理json格式的数据,因此封装了一个JSONUtil工具类。
JSONUtil.java
package com.bijian.json.study;
import java.util.ArrayList;
import java.util.Date;
import java.util.HashMap;
- [Zookeeper学习笔记之六]Zookeeper源代码分析之Zookeeper.WatchRegistration
bit1129
zookeeper
Zookeeper类是Zookeeper提供给用户访问Zookeeper service的主要API,它包含了如下几个内部类
首先分析它的内部类,从WatchRegistration开始,为指定的znode path注册一个Watcher,
/**
* Register a watcher for a particular p
- 【Scala十三】Scala核心七:部分应用函数
bit1129
scala
何为部分应用函数?
Partially applied function: A function that’s used in an expression and that misses some of its arguments.For instance, if function f has type Int => Int => Int, then f and f(1) are p
- Tomcat Error listenerStart 终极大法
ronin47
tomcat
Tomcat报的错太含糊了,什么错都没报出来,只提示了Error listenerStart。为了调试,我们要获得更详细的日志。可以在WEB-INF/classes目录下新建一个文件叫logging.properties,内容如下
Java代码
handlers = org.apache.juli.FileHandler, java.util.logging.ConsoleHa
- 不用加减符号实现加减法
BrokenDreams
实现
今天有群友发了一个问题,要求不用加减符号(包括负号)来实现加减法。
分析一下,先看最简单的情况,假设1+1,按二进制算的话结果是10,可以看到从右往左的第一位变为0,第二位由于进位变为1。
 
- 读《研磨设计模式》-代码笔记-状态模式-State
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
当一个对象的内在状态改变时允许改变其行为,这个对象看起来像是改变了其类
状态模式主要解决的是当控制一个对象状态的条件表达式过于复杂时的情况
把状态的判断逻辑转移到表示不同状态的一系列类中,可以把复杂的判断逻辑简化
如果在
- CUDA程序block和thread超出硬件允许值时的异常
cherishLC
CUDA
调用CUDA的核函数时指定block 和 thread大小,该大小可以是dim3类型的(三维数组),只用一维时可以是usigned int型的。
以下程序验证了当block或thread大小超出硬件允许值时会产生异常!!!GPU根本不会执行运算!!!
所以验证结果的正确性很重要!!!
在VS中创建CUDA项目会有一个模板,里面有更详细的状态验证。
以下程序在K5000GPU上跑的。
- 诡异的超长时间GC问题定位
chenchao051
jvmcmsGChbaseswap
HBase的GC策略采用PawNew+CMS, 这是大众化的配置,ParNew经常会出现停顿时间特别长的情况,有时候甚至长到令人发指的地步,例如请看如下日志:
2012-10-17T05:54:54.293+0800: 739594.224: [GC 739606.508: [ParNew: 996800K->110720K(996800K), 178.8826900 secs] 3700
- maven环境快速搭建
daizj
安装mavne环境配置
一 下载maven
安装maven之前,要先安装jdk及配置JAVA_HOME环境变量。这个安装和配置java环境不用多说。
maven下载地址:http://maven.apache.org/download.html,目前最新的是这个apache-maven-3.2.5-bin.zip,然后解压在任意位置,最好地址中不要带中文字符,这个做java 的都知道,地址中出现中文会出现很多
- PHP网站安全,避免PHP网站受到攻击的方法
dcj3sjt126com
PHP
对于PHP网站安全主要存在这样几种攻击方式:1、命令注入(Command Injection)2、eval注入(Eval Injection)3、客户端脚本攻击(Script Insertion)4、跨网站脚本攻击(Cross Site Scripting, XSS)5、SQL注入攻击(SQL injection)6、跨网站请求伪造攻击(Cross Site Request Forgerie
- yii中给CGridView设置默认的排序根据时间倒序的方法
dcj3sjt126com
GridView
public function searchWithRelated() {
$criteria = new CDbCriteria;
$criteria->together = true; //without th
- Java集合对象和数组对象的转换
dyy_gusi
java集合
在开发中,我们经常需要将集合对象(List,Set)转换为数组对象,或者将数组对象转换为集合对象。Java提供了相互转换的工具,但是我们使用的时候需要注意,不能乱用滥用。
1、数组对象转换为集合对象
最暴力的方式是new一个集合对象,然后遍历数组,依次将数组中的元素放入到新的集合中,但是这样做显然过
- nginx同一主机部署多个应用
geeksun
nginx
近日有一需求,需要在一台主机上用nginx部署2个php应用,分别是wordpress和wiki,探索了半天,终于部署好了,下面把过程记录下来。
1. 在nginx下创建vhosts目录,用以放置vhost文件。
mkdir vhosts
2. 修改nginx.conf的配置, 在http节点增加下面内容设置,用来包含vhosts里的配置文件
#
- ubuntu添加admin权限的用户账号
hongtoushizi
ubuntuuseradd
ubuntu创建账号的方式通常用到两种:useradd 和adduser . 本人尝试了useradd方法,步骤如下:
1:useradd
使用useradd时,如果后面不加任何参数的话,如:sudo useradd sysadm 创建出来的用户将是默认的三无用户:无home directory ,无密码,无系统shell。
顾应该如下操作:
- 第五章 常用Lua开发库2-JSON库、编码转换、字符串处理
jinnianshilongnian
nginxlua
JSON库
在进行数据传输时JSON格式目前应用广泛,因此从Lua对象与JSON字符串之间相互转换是一个非常常见的功能;目前Lua也有几个JSON库,本人用过cjson、dkjson。其中cjson的语法严格(比如unicode \u0020\u7eaf),要求符合规范否则会解析失败(如\u002),而dkjson相对宽松,当然也可以通过修改cjson的源码来完成
- Spring定时器配置的两种实现方式OpenSymphony Quartz和java Timer详解
yaerfeng1989
timerquartz定时器
原创整理不易,转载请注明出处:Spring定时器配置的两种实现方式OpenSymphony Quartz和java Timer详解
代码下载地址:http://www.zuidaima.com/share/1772648445103104.htm
有两种流行Spring定时器配置:Java的Timer类和OpenSymphony的Quartz。
1.Java Timer定时
首先继承jav
- Linux下df与du两个命令的差别?
pda158
linux
一、df显示文件系统的使用情况,与du比較,就是更全盘化。 最经常使用的就是 df -T,显示文件系统的使用情况并显示文件系统的类型。 举比例如以下: [root@localhost ~]# df -T Filesystem Type &n
- [转]SQLite的工具类 ---- 通过反射把Cursor封装到VO对象
ctfzh
VOandroidsqlite反射Cursor
在写DAO层时,觉得从Cursor里一个一个的取出字段值再装到VO(值对象)里太麻烦了,就写了一个工具类,用到了反射,可以把查询记录的值装到对应的VO里,也可以生成该VO的List。
使用时需要注意:
考虑到Android的性能问题,VO没有使用Setter和Getter,而是直接用public的属性。
表中的字段名需要和VO的属性名一样,要是不一样就得在查询的SQL中
- 该学习笔记用到的Employee表
vipbooks
oraclesql工作
这是我在学习Oracle是用到的Employee表,在该笔记中用到的就是这张表,大家可以用它来学习和练习。
drop table Employee;
-- 员工信息表
create table Employee(
-- 员工编号
EmpNo number(3) primary key,
-- 姓