HDU 5528 狄利克雷卷积

题目链接


题意:
给定 T ( ≤ 2 e 4 ) T (\leq 2e4) T(2e4)组数据,每组数据给出一个整数 n ( n ≤ 1 e 9 ) n(n \leq 1e9) n(n1e9),求:

A n s = ∑ m ∣ n ∑ i = 0 m − 1 ∑ i = 0 m − 1 [ ( i ∗ j ) % m > 0 ] Ans = \sum_{m|n}\sum_{i=0}^{m-1}\sum_{i=0}^{m-1}[(i*j) \% m > 0] Ans=mni=0m1i=0m1[(ij)%m>0]


思路:
正难则反
转化公式为:
A n s = ∑ m ∣ n ( m 2 − ∑ i = 0 m − 1 ∑ i = 0 m − 1 [ ( i ∗ j ) % m = 0 ] ) Ans = \sum_{m|n} (m^2 - \sum_{i=0}^{m-1}\sum_{i=0}^{m-1}[(i*j) \% m = 0]) Ans=mn(m2i=0m1i=0m1[(ij)%m=0])

F [ n ] = ∑ i = 0 m − 1 ∑ i = 0 m − 1 [ ( i ∗ j ) % m = 0 ] F[n] = \sum_{i=0}^{m-1}\sum_{i=0}^{m-1}[(i*j) \% m = 0] F[n]=i=0m1i=0m1[(ij)%m=0]

A n s = ∑ m ∣ n m 2 − F [ m ] Ans = \sum_{m|n} m^2 - F[m] Ans=mnm2F[m]

通过打表可以发现, F F F为积性函数
故:
G [ n ] = ∑ m ∣ n F [ m ] = ∑ m ∣ n F [ m ] ∗ I [ n / m ] G[n] = \sum_{m|n}F[m] = \sum_{m|n}F[m]*I[n/m] G[n]=mnF[m]=mnF[m]I[n/m]
两个积性函数的狄利克雷卷积仍为积性函数

故:
当 n = ∏ i = 1 t p i k i 当 n = \prod_{i=1}^tp_i^{k_i} n=i=1tpiki
有:
G [ n ] = ∏ i = 1 t G [ p i k i ] = ∏ i = 1 t ∑ j = 0 k i F ( p i j ) G[n] = \prod_{i=1}^tG[p_i^{k_i}] = \prod_{i=1}^t\sum_{j=0}^{k_i}F(p_i^j) G[n]=i=1tG[piki]=i=1tj=0kiF(pij)

故G[n]通过分解质因数可以高效求解
前面的约数平方和因为也是积性函数,同理可求。

以上。


代码:

#include
#include
#include
#include
#include
using namespace std;
typedef unsigned long long ull;

const int A = 1e5 + 10;
int pri[A], tot;
bool vis[A];

void Init(){
    tot = 0;
    for (int i = 2; i < A; i++) {
        if (!vis[i]) pri[++tot] = i;
        for (int j = 1; j <= tot && i * pri[j] < A; j++) {
            vis[i * pri[j]] = 1;
            if (i % pri[j] == 0) break;
        }
    }
}

ull fast_pow(ull n, int m){
    ull res = 1;
    while(m){
        if (m&1) res *= n;
        n = n * n;
        m >>= 1;
    }
    return res;
}

ull Fun1(int p, int r){
    return fast_pow(p, 2*r);
}

ull Fun2(ull p, ull r){
    if (r == 0) return 1;
    ull now = fast_pow(p, r - 1);
    return (now*p*(r+1) - r*now);
}

ull calc(int n){
    ull res1 = 1, res2 = 1;
    for (int i = 1; i <= tot && pri[i] * pri[i] <= n; i++) {
        if (n % pri[i] == 0) {
            int cnt = 0;
            while (n % pri[i] == 0) {
                n /= pri[i];
                cnt++;
            }
            ull tem1 = 0, tem2 = 0;
            for (int j = 0; j <= cnt; j++) {
                tem1 += Fun1(pri[i], j);
                tem2 += Fun2(pri[i], j);
            }
            res1 *= tem1;
            res2 *= tem2;
        }
    }
    if (n > 1) {
        res1 *= Fun1(n, 0) + Fun1(n, 1);
        res2 *= Fun2(n, 0) + Fun2(n, 1);
    }
    return (res1 - res2);
}

int main(){
    Init();
    ios::sync_with_stdio(false);
    cin.tie(0);
    int T; cin >> T;
    while (T--) {
        int n; cin >> n;
        cout << calc(n) << endl;
    }
    return 0;
}

你可能感兴趣的:(HDU,数论,狄利克雷卷积)